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Abstract

As of October 2025, about 98% of stablecoins by value are pegged to the U.S. dollar,
yet more than 80% of stablecoin transactions occur outside the United States. As
off-bank dollar liabilities, stablecoins may intensify digital dollarisation and deposit
substitution, with implications for bank funding and financial stability. I study the
GENIUS Act using a short-horizon event study of listed banks, relating abnormal
equity returns around enactment to cross-country measures of weak money, bank
fragility, and crypto adoption. These measures proxy for cross-country conditions
where incentives and frictions to substitute domestic deposits into dollar stablecoins
are strongest. I document that crypto adoption is positively associated with weak
monetary conditions in emerging market and developing economies (EMDEs). I
find no statistically significant evidence that short-horizon abnormal bank returns are
more negative around enactment in countries with higher exposure or higher crypto
adoption. I provide an early benchmark of how markets priced stablecoin-related
risks at the time of the GENIUS Act, and a reference point for interpreting future
policy shocks.
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1 Introduction

Stablecoins mark a transformative innovation in digital finance: blockchain-based tokens designed
to maintain a stable value, typically pegged to fiat currency. Their primary use case is to provide a
digitally native, programmable form of money that combines the stability of traditional currency
with the efficiency and accessibility of blockchain infrastructure (Jhanji et al., 2025). Aggregate
dollar-stablecoin capitalisation exceeds US$300 billion, about 14% higher than at the end of Q2
2025 (Mathiasen & Martinez, 2025). This underscores the rapid global rise of stablecoins.

Despite being marketed as safe digital cash and a tool for financial inclusion, most stablecoin
volume remains concentrated in leveraged trading, arbitrage, and DeFi activity on crypto exchanges
(Bank for International Settlements [BIS], 2023a). At the same time, a growing trend is evident in
emerging market and developing economies (EMDEs), where households and firms are increasingly
adopting stablecoins for payments, remittances, and as a store of value (BIS, 2023b). As stablecoins
become widely used forms of money, they increasingly function as an alternative to bank deposits
that sit outside the regulated banking system (BIS, 2023b). This phenomenon raises a fundamental
question: does the proliferation of private digital dollars siphon funding from traditional banking
systems and raise instability risks, particularly where domestic money is weak or banks are fragile?

In countries beset by high inflation, currency depreciation, or limited confidence in banks, households
and firms increasingly adopt USD-backed stablecoins as a safer store of value and medium of
exchange (Jhanji et al., 2025). These tokens are held in digital wallets rather than domestic bank
accounts, allowing users to save and transact in a stable currency without relying on local banks.
In practice, stablecoins act as a digital hedge against inflation and depreciation risk. This shift
is often labelled digital dollarisation: a technology-enabled extension of the classic dollarisation
phenomenon whereby people in unstable monetary environments spontaneously dollarise their
savings. Stablecoins may also be attractive where banking systems are fragile and domestic
deposits are perceived as less safe, accessible, or reliably convertible, making nonbank stablecoins a
precautionary substitute for local bank money. In this role, stablecoins compete with bank deposits
and can function as “shadow deposits,” privately issued dollar liabilities used like bank money but
outside insured banking institutions (Wilmarth, 2023, 2025).

Uptake is visible in countries like Türkiye, Argentina, Nigeria, and Venezuela, where confidence in
local money and banks is weak. In Türkiye, stablecoin purchases from April 2023 to March 2024
were about 4.3% of GDP, the highest global share (Jhanji et al., 2025). In recent years the lira has
depreciated sharply, falling by 44% in 2021, 29% in 2022, 37% in 2023 and 16% in 2024 against the
US dollar (Daily Sabah, 2025). Nigeria ranks second on Chainalysis’ 2024 Global Crypto Adoption
Index. High crypto adoption coincides with sharp naira depreciation and elevated inflation, alongside
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banking stress reflected in a system-wide non-performing loan ratio of about 4.5% (Chainalysis,
2024; International Monetary Fund [IMF], 2024). Although illustrative, these examples support the
view that strong crypto adoption is typically observed where domestic currencies are unstable and
banking systems face structural vulnerabilities.

The innovation of stablecoins has enabled a business model that is highly lucrative. Fiat-reserve
stablecoin issuers collect interest on reserves that are held largely in U.S. Treasury bills and cash.
They do not pass this yield to token holders. The token circulates on public blockchains and is not a
deposit and does not settle in central-bank money. Issuers retain the reserve yield, so profits scale
with front-end interest rates and outstanding supply. Tether is the largest stablecoin issuer. In 2025,
Tether reported $10 billion in profit for the first three quarters of 2025 (Lutz, 2025). That exceeds the
profitability of Bank of America, approaching that of Goldman Sachs and Morgan Stanley, despite
having fewer than 150 employees (Lutz, 2025).

Analysts estimate that up to $1 trillion in bank deposits could migrate from emerging-market banks
into stablecoins over the next few years (Jones, 2025). Such outflows would raise marginal funding
costs, compress net interest margins, and erode franchise values if deposit betas rise and core
deposits shrink. I investigate that concern by examining how a pivotal regulatory event in the United
States is capitalised into bank equity returns via the channel of deposit-substitution.

A defining moment in the formalisation of stablecoins occurred in July 2025, when the United States
enacted the Guiding and Establishing National Innovation for U.S. Stablecoins Act (GENIUS Act).
The Act established the first comprehensive U.S. regulatory framework for payment stablecoins (U.S.
Congress, 2025). By its provisions, nonbank entities and bank subsidiaries may issue stablecoins for
public use, subject to reserve, disclosure, and supervisory requirements. It requires that permitted
issuers maintain 100% reserve backing for their tokens in high-quality liquid assets such as U.S.
currency and Treasury bills, and submit to regulatory oversight, risk management standards, and
audits (U.S. Congress, 2025). It also mandates transparency via monthly disclosures of reserve
holdings and redemption policies. Notably, the Act clarifies that properly regulated stablecoins
are not to be treated as securities under U.S. law, carving out a distinct legal category for these
digital dollar tokens. By formally integrating stablecoins into the financial regulatory perimeter, the
GENIUS Act conferred a degree of legitimacy and investor protection that the stablecoin market
had previously lacked (Liang, 2025).

At the same time, international policy discussion has expressed concern that the GENIUS Act could
accelerate global stablecoin adoption in ways that undermine domestic monetary sovereignty and
financial stability (Liang, 2025; Mathiasen & Martinez, 2025; Wilmarth, 2025). This concern
echoes earlier warnings that widespread use of dollar stablecoins can intensify digital dollarisation
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and deposit substitution, weaken monetary policy transmission, and create bank-disintermediation
and capital-flow risks, especially in EMDEs (IMF, 2022; BIS, 2023b; Copestake et al., 2023; Le
et al., 2023; Wilmarth, 2023).

The GENIUS Act constitutes a distinct regulatory event that plausibly altered both the credibility and
usability of stablecoins. I treat this as a plausibly exogenous shock, generated by U.S. legislative and
regulatory processes unrelated to the fundamentals of foreign banking systems. The law’s passage
reduced legal and operational frictions for holding and transacting U.S. dollar tokens while leaving
deposit insurance and lender-of-last-resort protections unchanged. This shift provides a unique
opportunity to examine, in real time, how this shock is priced into bank equity returns, especially in
countries where monetary and financial systems are fragile or cryptocurrency adoption is already
prominent.

Within this framework, the Act offers a quasi-natural experiment that enables identification through
a difference-in-differences (DiD) event-study design (MacKinlay, 1997). I define three exposure
measures ex ante to capture cross-country heterogeneity in deposit substitution risk. Store-of-value
weakness reflects monetary fragility, proxied by recent inflation and foreign-exchange depreciation.
Bank fragility captures funding and solvency vulnerability, proxied by common equity tier 1
(CET1) capital ratios, NPL ratios, and liquidity buffers. Adoption measures the technological and
behavioural readiness for on-chain finance using the Chainalysis Global Crypto Adoption Index. In
economies where domestic money is a weak store of value or where banks are fragile, the improved
credibility of off-bank dollar tokens raises the perceived risk of bank disintermediation. I quantify
this response through the short-term return of listed banks, measured by short-horizon cumulative
abnormal returns (CAR) around the Act’s enactment date. As a first step, I analyse the relationship
between a country’s level of crypto adoption and its exposure to monetary and banking fragility.
This motivates the following research questions.

RQ1 (Adoption environment): What is the relationship between a country’s crypto adoption and
its store-of-value weakness and bank fragility, and does this differ between advanced economies and
EMDEs?
RQ2 (Market reaction to the shock): Do bank equity abnormal returns respond to the GENIUS
Act enactment, and does the magnitude of the response vary with countries’ store-of-value weakness
and bank fragility?
RQ3 (Adoption as an amplifier): Does a country’s higher crypto adoption amplify the exposure
effect of the GENIUS Act on bank equity abnormal returns in the post window?

The evidence on RQ1 show that crypto adoption is generally higher in emerging market and
developing economies (EMDEs) than in advanced economies and is positively associated with
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weaker monetary conditions. In contrast, adoption shows no strong or robust relationship with
banking-system fragility. This pattern is consistent with the view that cross-country variation in crypto
use is more closely tied to monetary instability—such as inflation and currency depreciation—than
to weaknesses in bank capitalisation or liquidity. It also implies that the countries most exposed to
potential digital dollarisation pressures are those where weak domestic money coincides with already
elevated crypto adoption. This finding aligns with the emerging empirical literature emphasising
stablecoin use in vulnerable monetary environments.

For RQ2, neither the cross-sectional cumulative abnormal return results nor the dynamic panel
event-study estimates reveal statistically significant exposure effects in bank equity returns around the
GENIUS Act shock. A wide set of robustness checks—varying abnormal-return models, aggregation
weights, event windows, and sample composition—does not materially alter this conclusion. For
RQ3, triple-difference specifications likewise provide no consistent evidence that higher crypto
adoption amplifies exposure effects on short-horizon bank returns following enactment.

Taken together, the results suggest that, at the time of the GENIUS Act event, there is no clear
evidence of large, systematic exposure-related equity response. Within the limits of this design,
equity markets did not treat final passage as an immediate threat to bank franchise values through
deposit substitution, even in countries combining high adoption with weak monetary conditions.
This interpretation is conditional on the identified event capturing meaningful new information. The
null findings are not inconsistent with the current scale and use of stablecoins, which remain small
relative to global bank balance sheets and are still concentrated in trading and decentralised-finance
activity. It is also possible that market participants expected the GENIUS act to integrate stablecoins
into a more regulated, complementary role, with any destabilising deposit outflows viewed as
contingent on future adoption and implementation.

Within this interpretation, I make three contributions. First, I provide a baseline cross-country
characterisation of how crypto adoption co-varies with monetary weakness and bank fragility, and I
clarify where digital dollarisation pressures are currently strongest. Second, I introduce a novel
regulatory setting that uses prediction-market data to time a global stablecoin information shock,
and I apply event-study and DiD methods to bank equities in a broad international sample. Third, I
offer a market-based benchmark for the current phase of the stablecoin–bank nexus. At current scale,
and within the limits of this design, I find that market participants do not price stablecoin-specific
regulation as an immediate, first-order source of deposit-substitution or franchise-value risk for
banks.

Looking forward, I frame my message as conditional and incremental rather than definitive. In
my sample period, I find that the stablecoin–bank nexus remains at an early stage in listed-bank
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valuations. The key policy question is not whether stablecoins could matter for banks in principle,
but when and through which channels they will matter in practice. If stablecoins become embedded
in everyday payments and savings, I expect the mechanisms behind classic dollarisation and shadow
banking to become more prevalent. In that scenario, I anticipate that shifts from insured deposits
into private digital dollars could raise bank funding costs, constrain credit supply, weaken domestic
banking resilience, and affect households’ access to safe money and reliable payment systems.
Future work should test these channels over longer horizons and with more direct measures of
stablecoin use, deposits, and bank funding responses across countries. Should adoption scale further
and regulation proliferate across jurisdictions, this framework can be reapplied to identify when
stablecoins begin to pose material risks to bank intermediation.

2 Literature Review

2.1 Shadow Banking and Private Money

Classic banking theory highlights that banks are inherently fragile because they fund long-term
illiquid assets with short-term demand deposits. In the seminal Diamond–Dybvig model, banks’
liquidity transformation creates the possibility of panic runs: if all depositors demand their money
at once, even a solvent bank cannot honour all withdrawals (Diamond & Dybvig, 1983). Modern
shadow banking literature generalises this insight: shadow banks conduct similar maturity and
liquidity transformation without central-bank backstops or deposit insurance. Pozsar et al. (2010),
for example, define shadow banks as intermediaries engaging in credit intermediation via money-like
liabilities but lacking access to lender-of-last-resort facilities. By this definition, stablecoins fit
squarely into the shadow banking framework.

Gorton and Zhang (2023) compare stablecoins to nineteenth-century wildcat banknotes, arguing
that issuing “circulating private money” makes stablecoin issuers analogous to unregulated banks
whose notes may trade below par and are vulnerable to runs. In their view, stablecoins are the digital
version of these private banknotes: they promise convertibility at par into dollars but rely on private
issuers’ credibility and asset quality rather than on public guarantees, and thus inherit the same
structural fragilities. Together, these contributions place stablecoins squarely within the broader
tradition of privately issued money liabilities that compete with, and sometimes undermine, public
money.

From a regulatory perspective, BIS (2025) warns that today’s stablecoin designs have inherent
systemic risks. The BIS stresses three tests for sound money; singleness, elasticity, and integrity.
Stablecoins fail each test. That judgment is consistent with observed de-pegs, issuer heterogeneity,
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and compliance gaps. They fragment par acceptance because stablecoins from different issuers
trade at variable spreads. They are inelastic because supply expands only against pre-funded
reserves. And they often dodge Know Your Customer (KYC) and Anti-Money laundering (AML)
controls, compromising integrity (BIS, 2025). Additionally, these instruments promise one-for-one
redemption into U.S. dollars yet sit wholly outside the traditional two-tier monetary hierarchy
of central-bank reserves (Tier 1) and commercial-bank deposits (Tier 2). Stablecoins can pull
retail funds out of the regulated safety net of a two-tiered monetary system and strip those funds
of safeguards that make commercial-bank money safe. Unlike insured deposits, token balances
carry no deposit-insurance guarantee; if the issuer fails, holders stand in line with unsecured
creditors. Given that reserves backing most coins are held in opaque trust structures, the tokens lack
a lender-of-last-resort. Therefore, the central bank has no legal basis or practical incentive to inject
liquidity should redemptions surge (BIS, 2025).

Olk and Miebs (2025) argue that the crypto ecosystem has evolved into a credit-based shadow
banking system. They argue that stablecoins play a central role in this transformation, effectively
functioning as “shadow money” that substitutes for bank money within crypto markets. A key
concern is that this shadow crypto banking is prone to the same cycle of boom and bust familiar
from centuries of financial history. During the 2020-2022 crypto boom, for instance, private actors
introduced new forms of money and credit (stablecoins, yield-bearing crypto accounts) that thrived
in a lightly regulated space. When crypto markets crashed—as with the implosion of the TerraUSD
stablecoin and the failure of the FTX exchange in 2022—the lack of safeguards led to devastating
runs and loss of confidence. In the words of Olk, “when the bubble eventually bursts, either the
state saves these new forms of currency and regulates them. . . or they vanish into thin air”. By late
2022, the crypto financial system was in crisis, wiping out hundreds of billions in asset values and
prompting urgent calls for a regulatory response.

In contrast, proponents suggest that well-regulated stablecoins need not pose outsized risks and can
even complement the traditional system. They argue that tokenized, blockchain-based money can
increase competition and efficiency in payments (Liang, 2025). For instance, stablecoins enable 24/7
instantaneous transfers and programmable transactions, potentially reducing costs for cross border
payments or enabling new financial products. In principle, these innovations can occur alongside
banks rather than entirely outside them. Some banks have explored issuing their own deposit-backed
stablecoins or providing reserve and settlement services for stablecoin issuers, and central banks
have considered designs in which such instruments are embedded within the existing monetary
architecture (BIS, 2025). In this more optimistic view, fully backed tokenised payment instruments
function as narrow payment rails that sit alongside commercial banks, while banks retain their
core roles in deposit-taking and credit intermediation. The extent to which stablecoins evolve into
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regulated payment utilities integrated with existing banking structures, rather than shadow banking
rivals, is a central question in the literature. This distinction is a key backdrop for assessing their
implications for bank funding and financial stability.

2.2 Digital Dollarisation and Currency Substitution

A related strand of literature concerns dollarisation and currency substitution in emerging markets.
Classic studies document that in high-inflation or unstable-currency environments, economic agents
shift into foreign currency assets (typically U.S. dollar cash or dollar deposits) to preserve value.
This phenomenon weakens the domestic currency and can undermine monetary policy effectiveness.
Recent research has begun to examine how cryptoassets and stablecoins extend these dynamics into
the digital realm. BIS (2023b) coins the term “cryptoisation” to describe how crypto adoption can
accompany a shift from domestic currency to privately issued dollar assets. Ante et al. (2023) note
that emerging-market users in countries like Turkey and Argentina with chronic inflation are likely
to convert savings into U.S. dollars via stablecoins, mirroring traditional dollarisation. By offering
digital access to dollars, stablecoins effectively enable “digital dollarisation.” IMF analysts similarly
warn that widespread use of USD stablecoins poses a risk of de facto dollarisation: people may
use private digital dollars in parallel with the local currency, eroding the latter’s role (IMF, 2022;
Mathiasen & Martinez, 2025).

Formal macroeconomic models confirm these intuitions. Le et al. (2023) develop a two-country
New Keynesian model where households in a small economy can hold a foreign-issuer stablecoin as
a hedge against inflation. They find that introducing a foreign dollar stablecoin amplifies currency
substitution: domestic agents hold more foreign currency units (stablecoins), reducing domestic bank
deposits and increasing capital outflows under shocks. This mechanism reduces credit intermediation
by domestic banks, weakens monetary policy transmission, and intensifies recessionary downturns.
Similarly, Copestake et al. (2023) use a small open-economy model to show that foreign crypto
assets cause significant currency substitution and deposit flight in developing economies, pressuring
banks and policy. These models suggest that if a credible foreign dollar–pegged stablecoin enters
circulation, it can function much like traditional dollarisation, channelling savings away from local
money into crypto.

2.3 Bank Disintermediation and Financial Stability Risks

Policymakers have become increasingly concerned that off-bank digital currencies, in particular
foreign-currency stablecoins, could weaken domestic banking systems in emerging markets. The
Bank for International Settlements’ report on financial stability risks from cryptoassets in emerging
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markets highlights bank disintermediation and capital flow risks as key channels through which
large-scale use of cryptoassets, including stablecoins, can erode banks’ funding bases and complicate
monetary policy transmission (BIS, 2023b). The IMF’s analysis of stablecoins similarly identifies
currency substitution and bank disintermediation as first-order financial stability risks when
stablecoins are used as a store of value and as a means of payment (IMF, 2022). When households
and firms shift from domestic bank deposits into USD-backed stablecoins, banks lose a core source
of local funding, which can constrain credit supply to the real economy and heighten vulnerability to
shocks. These concerns are especially acute in emerging markets, where domestic currencies often
exhibit high inflation and exchange-rate volatility, and banking systems are smaller, more dependent
on retail deposits, and less able to absorb large and sudden outflows from the regulated perimeter
into offshore digital dollars (IMF, 2022; BIS, 2023b)

If a significant share of money currently held as bank deposits migrates to stablecoins, banks could
face sustained funding pressures that reduce their capacity to lend to the real economy (Wilmarth,
2025). Wilmarth (2025) cautions that the GENIUS Act’s allowance of nonbank stablecoin issuers
might accelerate this trend by legitimising stablecoins as substitutes for bank deposits. In a scenario
where tech firms or fintechs issue widely adopted stablecoins, one could see “narrow banking”
at scale––large pools of funds sitting in stablecoin reserves rather than in bank deposit accounts,
potentially “pulling away large amounts of bank deposits” (Wilmarth, 2025). This outcome would
effectively shift credit creation from traditional banks to the issuers’ investment choices (often
government securities or other low-risk assets), which could impair banks’ capacity to extend loans
to households and businesses. Moreover, the entry of Big Tech into the monetary realm (e.g. a
company like Facebook attempting a stablecoin) raises the issue of huge user networks rapidly
reallocating funds away from banks, undermining the longstanding policy of separating banking
and commerce (Wilmarth, 2025).

On the other hand, empirical evidence to date has not shown dramatic bank disintermediation from
stablecoins, largely because the stablecoin market is still small relative to the banking sector. As of
2025, U.S. bank deposits total in the tens of trillions of dollars, dwarfing the ~$0.3 trillion market
capitalisation (Huther & Wang, 2025). A recent industry study by Tsyrennikov (2025) examined
the relationship between stablecoin growth and community bank deposits and found no statistically
significant impact so far. Using U.S. data from 2019–2025, the study tested if increases in the
circulation of USDC (a major U.S.-based stablecoin) correlated with declines in community bank
deposit levels, controlling for macroeconomic factors. The results showed no material erosion
of bank deposits attributable to stablecoin adoption (Tsyrennikov, 2025). These findings suggest
that, up to now, stablecoins have functioned largely as adjuncts to the crypto markets in the U.S.
rather than competitors to mainstream bank deposits. Yet, extending the analysis beyond the U.S. is
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essential to assess whether the risks outlined in Section 3.2 materialise differently under structural
conditions that create distinct channels for potential deposit substitution.

Recent projections highlight what is at stake. BPI Staff (2025a) compile analyst forecasts indicating
that, depending on assumptions about new use cases and adoption, the market value of dollar-
denominated stablecoins could range from roughly US$500 billion to about US$2 trillion by 2028,
and could reach as high as about US$2.9 trillion by 2030 (BPI Staff, 2025a). Such growth, if
funded largely by outflows from bank deposits, could be consequential for banks’ funding structures.
Drawing on calculations by Huther and Wang (2025), BPI Staff (2025a) note that, in a worst-case
scenario where all stablecoin growth comes at the expense of bank deposits, U.S. banks could
experience around a 10–20% decline in deposits, with larger declines possible under more aggressive
growth assumptions (BPI Staff, 2025a). Even if some of the inflows into stablecoins were to come
from money market funds or other sources, BPI Staff (2025a) still judge that “a substantial decline
in deposits would seem likely” at the upper end of these growth projections (BPI Staff, 2025a).

Bank policy analysts further warn that, if payment stablecoin reserves are invested predominantly in
short-term U.S. government debt and similar instruments rather than in bank deposits, the funds
that currently support loans to households and businesses would instead finance the expansion of
U.S. government debt (BPI Staff, 2025b). In such a configuration, theoretical analysis of narrow-
bank-style stablecoin arrangements suggests a reduction in traditional bank credit intermediation,
because stablecoin issuers would hold safe public liabilities instead of deposits that can be recycled
into private lending (Liao & Caramichael, 2022). Conversely, if issuers hold a large share of
their reserves as uninsured deposits at commercial banks, BPI Staff (2025a) argue that stablecoin
issuers themselves could become a new class of highly run-prone wholesale creditors, so that a run
on stablecoins would trigger large, correlated withdrawals from banks and significantly amplify
stress in the banking system (BPI Staff, 2025a). Detailed balance-sheet simulations for euro-area
banks similarly show that large, concentrated deposits from stablecoin issuers are treated as volatile
funding and tighten regulatory liquidity constraints, underscoring the systemic risks associated with
such deposit structures (Coste, 2024). Taken together, these scenarios motivate regulators to design
safeguards that address both the loss of deposit funding and the instability of deposits linked to large
stablecoin issuers before the sector scales further.

2.4 Regulatory Developments: The GENIUS Act

Given the above risks and the rapid growth of stablecoins, regulatory responses have been gaining
momentum. Early U.S. policy deliberations coalesced in the President’s Working Group (PWG)
Report on Stablecoins (November 2021), a landmark report that outlined the perceived risks and
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made preliminary recommendations. The PWG—comprising the Treasury, Federal Reserve, FDIC,
and OCC—highlighted run risk, payment system risk, and concentration of economic power as key
issues if stablecoins were to scale as a mainstream payment method. Notably, the PWG emphasised
that stablecoins at that time were “primarily used to facilitate trading of other digital assets” rather
than everyday payments, but their potential future use by households and businesses warranted a
comprehensive framework (President’s Working Group on Financial Markets et al., 2021).

After extensive debate, the United States enacted the GENIUS Act in 2025. This was a milestone
that codified the first comprehensive federal stablecoin framework. The GENIUS Act represents a
more nuanced approach than the PWG’s bank-only vision, reflecting compromises to accommodate
innovation while addressing risks. Under the Act, stablecoin issuers have two options. They can
operate as insured depository institutions (banks), or they can be nonbank firms that obtain a special
licence as “payment stablecoin issuers”. In practice, this means that nonbank fintech firms may issue
stablecoins, but only if they are federally or state qualified under new regulatory standards, similar
to credit unions or trust companies (Liang, 2025). This creates a new class of regulated nonbank
financial institution dedicated to stablecoin issuance. The Act also clarifies what stablecoins are not:
they are not bank deposits (and therefore are not covered by deposit insurance), are not legal tender,
and are not securities, which helps narrow questions about SEC jurisdiction. Authorised stablecoin
issuers face tight activity limits. They may issue and redeem stablecoins and offer closely related
payment services, but they cannot engage in the broad lending and investment activities that banks
undertake. The aim is to keep payment stablecoin issuers low risk and focused on payments, rather
than allowing them to become leveraged intermediaries engaged in maturity transformation (U.S.
Congress, 2025).

While the GENIUS Act provides statutory clarity, it delegates significant responsibility to regulators
to fill in the details. It mandates that the Federal Reserve, FDIC, and Treasury (among others) draft
implementing rules within 18 months on critical prudential standards. These include capital and
liquidity requirements for issuers to ensure they maintain a stable value of coins, risk management
standards, and provisions to uphold the “singleness of money” ––essentially, maintaining confidence
that a dollar in stablecoin is as good as a dollar anywhere else. Ensuring the “singleness of money”
is challenging without central bank backing, but regulators are tasked to preserve parity to the extent
possible (Liang, 2025). The Act also addresses competitive and systemic concerns: it instructs
regulators to set limits on non-financial companies issuing stablecoins (to prevent Big Tech from
gaining excessive influence via stablecoin issuance), and requires that foreign stablecoin providers
seeking U.S. customers meet “comparable regulatory” standards to domestic ones (closing the door
on regulatory arbitrage via offshore issuers). Additionally, AML/CFT compliance is a focus––the
Act directs the Financial Crimes Enforcement Network to ensure issuers have the technological
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capability to enforce anti-money-laundering rules in these digital networks (Liang, 2025).

One notable provision in the GENIUS Act is the prohibition on stablecoin issuers paying interest to
coin holders (U.S. Congress, 2025). This was likely included to keep stablecoins as straightforward
payment instruments, not investment products that compete with bank savings accounts or money
market funds. By forbidding interest on stablecoin balances, the Act aims to prevent an incentive
that could dramatically accelerate deposit outflows (BPI Staff, 2025b). However, as the Bank Policy
Institute pointed out, this prohibition can be circumvented by crypto exchanges or DeFi platforms,
which can separately offer yield to users for parking stablecoins on their platform (BPI Staff, 2025a,
2025b). Thus, while the issuers themselves cannot advertise a yield, the ecosystem may still develop
quasi-interest through other means. This an area regulators will need to monitor.

The GENIUS Act’s approach has drawn mixed reactions in the literature. Proponents argue that it will
bring stablecoins into the regulatory perimeter and foster greater trust, innovation, and integration of
crypto-dollar markets with the traditional financial system (Liang, 2025). By providing clear rules
and legitimacy for stablecoin issuers, the law could encourage more stable, fully reserved coins that
might be used in mainstream payments (e.g. remittances, merchant transactions) and not just on
crypto exchanges. It also positions the U.S. to be a leader in digital asset regulation, potentially
propelling the digital dollar ecosystem forward in a safer manner. The optimism is that, under the
Act’s oversight, stablecoins could deliver on promised benefits like lower-cost cross-border transfers,
financial inclusion via dollar access in underserved regions, and 24/7 payment functionality in the
economy (Mathiasen & Martinez, 2025). By restricting stablecoin issuers’ activities and enforcing
reserve quality, the Act seeks to capture these benefits without allowing excessive risk-taking.

Critics, however, contend that the GENIUS Act stops short of what is necessary to mitigate the
threats posed by stablecoins. From a financial stability standpoint, scholars like Wilmarth (2025)
argue the Act “would establish a very weak and inadequate regulatory system”, leaving stablecoins
as uninsured, runnable liabilities that could still require bailouts in a crisis. In his view, anything
less than full bank-level regulation (i.e. treating stablecoins as deposits) is insufficient. The Act’s
decision to let nonbanks issue stablecoins is seen as a concession to industry that could entrench
shadow banking, by creating a parallel set of institutions issuing money without the full spectrum of
bank regulation and safety nets. Wilmarth (2025) strongly advocates an alternative path: reject the
GENIUS Act and mandate that all stablecoin issuers be FDIC-insured banks. Only by doing so, he
argues, can regulators ensure stablecoins are offered in a “safe, well-regulated manner that protects
consumers and maintains financial stability”.

The real-world effectiveness of the GENIUS Act will depend on how well it is implemented. The
Act gives regulators considerable discretion to impose prudential standards. If these rules (capital,

11



liquidity, disclosure, etc.) are stringent, they could address many stability concerns short of forcing
bank charters. Conversely, if rules end up lenient under industry pressure, the fears of shadow
banking risks could be realised (BPI Staff, 2025a, 2025b; Wilmarth, 2025). The literature identifies
key open questions: Will stablecoin issuers be required to hold capital buffers or insurance for
their obligations? How rigorously will reserves be regulated and audited? Can regulators truly
enforce parity and redemption obligations in all conditions? Also, as stablecoins potentially shift
from being used mainly in crypto trading to broader payment uses, will consumer protections and
financial integrity (AML/KYC) measures keep pace? These unresolved issues form a backdrop for
current research and policy analysis. While the long-term impact of the GENIUS Act will depend
on how regulators implement its provisions, its passage marks a regulatory turning point that invites
immediate scrutiny. I treat the passage of the GENIUS Act as a regulatory information shock to bank
equity markets enabling an empirical investigation into how banks react to this new information.

2.5 Empirical Literature Gaps and Contribution

Ante et al. (2023) survey 22 empirical studies on stablecoins and find that most focus narrowly on
price pegs, trading arbitrage, or network behaviour. They highlight that “many important aspects
of stablecoins have not yet been researched”. Notably, one of the five topics they consider most
significant is the use of stablecoins in emerging markets. In reviewing the academic literature on
stablecoins, it becomes apparent that this is a fast-evolving topic with interests for both finance
theory and public policy.

Existing literature does not provide empirical evidence that relates stablecoin adoption to domestic
banking sector outcomes or examines bank equity market reactions to the GENIUS Act. Prior work
mainly maps out the conceptual risks of “shadow banking via stablecoins” and considers scenarios
in which stablecoins either integrate with existing banking structures or substitute for bank deposits
and intermediation (BIS, 2025). The literature consists largely of theoretical models of runs and
adoption, historical analogies, and forward-looking policy analyses based on assumptions rather
than data. Few studies rigorously measure the real-world impact of stablecoins on banks’ funding,
risk, or valuations outside the U.S.

To address that gap, I provide new empirical evidence on how stablecoin adoption and stablecoin
specific regulation are reflected in bank equities. First, it documents how crypto adoption varies
across countries and shows how this variation relates to store-of-value weakness and bank fragility,
with particular attention to EMDEs. While the general vulnerability of certain economies to digital
dollarisation is well understood, this analysis provides a more precise, data-driven identification of
where deposit substitution risks are most acute. Second, it treats the GENIUS Act as a stablecoin-

12



specific regulatory information shock and uses an international bank event-study framework
to examine how bank equities respond when this law is passed. By exploiting cross-country
heterogeneity in monetary conditions, bank fragility, and crypto adoption, the analysis provides
early market-based evidence on whether stablecoin regulation is priced as relevant for banks through
the channel of deposit substitution.

Following the event-study framework in MacKinlay (1997), I apply standard event-study and
difference-in-differences econometric modelling to a novel regulatory setting. This approach is
consistent with recent empirical work that studies regulatory interventions through bank equity
valuations and lending outcomes, such as the analysis of the ECB dividend ban by Sanders et al.
(2024). By combining short-horizon cumulative abnormal returns with cross-sectional and panel
difference-in-differences specifications, I provide a transparent way to assess how regulation of
private digital money feeds back into banks.

If the empirical results suggest that banks in high-adoption, weak-money, and fragile systems
experience more adverse equity-market reactions, this will provide early evidence that stablecoin-
specific regulation is already being priced as a material risk to traditional financial institutions. If
no significant equity-market reaction is observed this would suggest that suggest that markets do
not yet perceive stablecoin-specific regulation as a material threat to traditional banking models.
This evidence is particularly relevant for central banks and policy makers as they design stablecoin
frameworks, consider cross-border spillovers from major jurisdictions, and assess how to safeguard
bank-based intermediation in an environment of expanding digital private money.

To address the research questions, I formulate the following three hypotheses.

H1: Countries with higher store-of-value stress and more fragile banking systems associate with
higher crypto adoption, particularly within EMDEs.
H2: Around the GENIUS Act event, banks in countries with weaker store-of-value fundamentals
and more fragile banking systems experience more negative abnormal equity returns.
H3: The sensitivity of bank abnormal returns to store-of-value weakness and bank fragility is
stronger in countries with higher pre-existing crypto adoption.

These predictions follow from mechanisms emphasised in the literature. Digital dollarisation research
implies that when domestic currency is a weak store of value, incentives to hold dollar-denominated
instruments outside domestic banks rise. Crypto and stablecoin adoption should therefore be higher
where these incentives are strongest, particularly in EMDEs (H1). Banking fragility can add to this
adoption motive by weakening deposit safety and making off-bank dollar claims more attractive
relative to domestic deposits (H1). The GENIUS Act is treated as a stablecoin-specific information
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shock because it establishes a federal framework for nonbank dollar stablecoins and lowers legal and
operational barriers to their use. Policy and academic analyses commonly interpret GENIUS as a
credibility and frictions shock that expands the scope for deposit substitution into nonbank dollar
stablecoins. Banks in more exposed monetary or fragile banking environments should therefore
experience more adverse abnormal returns (H2). Integration views and implementation uncertainty
could dampen the effect, though the cross-sectional prediction remains negative (H2). Narrow-
banking and reserve-structure arguments further imply state dependence. Deposit substitution is
easier to scale once adoption and supporting rails are already in place. Sensitivity of bank returns to
monetary stress and banking fragility should therefore be strongest in high-adoption jurisdictions
(H3).

3 Data and Measures

3.1 Data Sources and Sample Construction

The bank sample is drawn from Refinitiv LSEG Workspace (Refinitiv, 2025). I start from a global
equity screener of active securities that are flagged as the primary quote and classified as fully
paid or ordinary shares. I restrict the sample to firms whose main listing is flagged as the primary
quote and whose shares are classified as fully paid ordinary shares. From this sample, I retain only
companies that Refinitiv categorises as deposit-taking banks under the Thomson Reuters Business
Classification. For each security I obtain the Refinitiv identifier (RIC), the company name, the
country of headquarters, the country of exchange, the exchange name, the main domestic stock index
RIC and the 30-day average daily value traded in U.S. dollars. I assign the ISO3 country code to
each bank based on its country of headquarters. This produces a multi-country sample of listed
banks in both advanced economies and EMDEs.

I construct daily return data from Refinitiv for both banks and their domestic equity benchmarks
over the period January 2024 to December 2025. For each bank, I obtain the daily closing price of
its primary equity listing. I also obtain the daily closing level of its main domestic equity index
reported in the Refinitiv screener. This mapping links each bank to its corresponding benchmark
equity index. I sort each price series by calendar date, remove observations with non-positive prices
and collapse any duplicate identifiers to a single series. I then compute daily log returns for both
bank and benchmark indices and retain only dates for which both returns are available.

To mitigate the influence of illiquid equities, I apply a global liquidity filter based on the 30-day
average daily value traded in U.S. dollars. I compute the cross-sectional distribution of this measure
across all banks with positive values and retain only those at or above the 20th percentile. This
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yields a panel of reasonably liquid listed banks that trade with sufficient frequency to support daily
event-study analysis.

Macroeconomic and banking system data are taken from the World Bank’s World Development
Indicators (WDI) for inflation and exchange rates (World Bank, 2024) and from the IMF Financial
Soundness Indicators (FSI) for bank capital, asset quality, and liquidity (IMF, 2024).

Crypto adoption data are drawn from the Chainalysis 2024 Geography of Cryptocurrency report
(Chainalysis, 2024). Chainalysis assigns each country a rank, where a lower rank corresponds to
higher adoption. This Index include over 150 countries and is based on two components: (i) on-chain
transaction volumes weighted toward retail activity and (ii) peer-to-peer exchange flows. Because
these components emphasise retail participation rather than institutional trading, the index captures
settings where crypto is embedded in everyday payments and savings. Although the measure is
not stablecoin-specific, it provides a useful proxy for a country’s broader on-chain penetration and
household-level propensity to use crypto rails, which are prerequisites for stablecoin adoption.

I classify countries into “advanced economies” and “emerging market and developing economies”
(EMDEs) using the International Monetary Fund World Economic Outlook (WEO) economy
classification (International Monetary Fund, 2025). The WEO Statistical database divide the world
into two groups, advanced economies and emerging market and developing economies, and list
the members of each group. I take all economies in the WEO “advanced economies” group as
advanced and classify all remaining sample countries as EMDEs. This classification is widely used
in policy discussions of digital dollarisation and provides an externally defined, policy relevant way
to distinguish EMDEs from advanced economies in my data. Table A1 reports the resulting country
composition of the event-study samples, including each country’s EMDE status, the number of
liquid listed banks, the exposure index, the two-day cumulative abnormal return, and the crypto
adoption percentile.

Finally, to identify the timing and magnitude of the GENIUS Act regulatory shock, I use intraday
prediction market prices from the Polymarket betting market for the contract “GENIUS Act signed
into law in 2025?” (Polymarket, 2025). This provides a high-frequency, forward-looking measure of
market beliefs about passage of the Act, which I use to anchor event time.

3.2 Construction of Key Variables

Equity returns provide a forward-looking measure of how the GENIUS Act affects the value of
banks. In standard asset pricing logic, stock prices equal the discounted value of expected future
cash flows, adjusted for risk, so news about regulatory changes that alters expected profitability or
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required returns should be reflected in bank equity prices on or around the announcement (Campbell
et al., 1997; Fama, 1998). Daily equity returns are observable at high frequency and are comparable
across countries, which allows the timing of the outcome to be aligned precisely with the event
window. Alternative outcomes such as lending volumes, deposit flows, or accounting ratios are
typically available only at quarterly or annual frequency and with substantial reporting lags, which
makes them poorly suited for narrow event windows.

For each bank i and day t, the daily log return is defined as 𝑟𝑖,𝑡 = ln 𝑃𝑖,𝑡 − ln 𝑃𝑖,𝑡−1, where 𝑃𝑖,𝑡 is
the closing price. I compute analogous returns 𝑟𝑚

𝑗,𝑡
for each domestic stock index j. Using the

main index RIC from Refinitiv, I map each bank to a single domestic benchmark 𝑗 (𝑖). The baseline
abnormal return is the simple market adjusted return 𝐴𝑅𝑖,𝑡 = 𝑟𝑖,𝑡 − 𝑟𝑚𝑗 (𝑖),𝑡 . This specification subtracts
the domestic equity index from each bank’s return, so that broad market movements are removed
while avoiding the sampling noise that arises when bank specific betas are estimated from a limited
pre-event sample (MacKinlay, 1997). To connect bank-level abnormal returns to country-level
exposures, I aggregate to the country–day level. I first map each bank to its ISO3 country of
headquarters. Within each country c and calendar date t I winsorise bank-level abnormal returns
at the 1% tails and then compute the equal-weighted average across all banks in that country that
pass the liquidity filter. I denote this average by 𝐴𝑅𝑐, 𝑡. I convert this average to bps and define the
country–day abnormal return as 𝑌𝑐,𝑡 = 10,000 × 𝐴𝑅𝑐, 𝑡. This variable is the dependent variable in
the daily DiD specifications.

For the cross-sectional analysis of the average post-shock effect in equation (2), I construct a
country-level cumulative abnormal returns over the post window from event day 0 to event day 1. For
each country c, I define𝐶𝐴𝑅𝑐 (0, 1) = 𝑌𝑐,0 +𝑌𝑐,1. I include only countries with observations for both
event days to ensure a consistent horizon across the cross-section. This country-level cumulative
abnormal return is the dependent variable in the “post-window average effect” regressions.

I aggregate bank-level abnormal returns to the country–day level because the key explanatory
variables and the regulatory shock are defined at the country level. The store-of-value index, the
fragility index, and the adoption measure all vary across countries but not across banks within a
country. The GENIUS Act also changes the regulatory environment at the country level, not for
individual banks. In this setting, bank-level regressions would treat many observations within a
country as if they carried independent information, even though they share the same exposure and
policy treatment. Inference would still need to cluster at the country level, so the effective number
of independent units would be the number of countries rather than the number of banks (Angrist &
Pischke, 2009; Wooldridge, 2010). Aggregating abnormal returns to a country–day average makes
this structure explicit. It avoids overweighting large banking systems with many listed banks relative
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to countries with only a few banks and reduces idiosyncratic bank-specific noise that is unrelated to
country-level exposure. The equal-weighted country average is therefore a natural choice for testing
hypotheses about cross-country exposure to the GENIUS Act, and it aligns the level of variation in
the dependent variable with the level at which exposure and treatment are measured.

I define store-of-value weakness using two components from the World Development Indicators
(World Bank, 2024): consumer price inflation and exchange rate depreciation. First, I take the 2024
annual consumer price inflation rate, reported under the series code “FP.CPI.TOTL.ZG”. Higher
inflation indicates weaker performance of the domestic currency as a store of value. Second, I
compute the percentage depreciation of the domestic currency against the U.S. dollar between 2023
and 2024 using the official exchange rate “PA.NUS.FCRF”, expressed as local currency units per
U.S. dollar. The depreciation rate is the percentage increase in that exchange rate between 2023 and
2024. For each country I winsorise both components at the 1 percent tails, standardise them to have
mean zero and unit variance, and then take their average. I denote this composite index by 𝐸𝑠𝑜𝑣,𝑧.
Higher values of 𝐸𝑠𝑜𝑣,𝑧 correspond to weaker store-of-value performance.

I define bank fragility using three components from the IMF Financial Soundness Indicators for
deposit-taking institutions for 2024 (IMF, 2024). The components are the common equity tier
1 (CET1) capital ratio “FSI15_CFSI_PT”, the ratio of non-performing loans to total gross loans
“AQ12_CFSI_PT”, and the ratio of liquid assets to short-term liabilities “FSI765_CFSI_PT”. For
each country I construct transformed components so that higher values always indicate greater
fragility. I take the negative of the CET1 capital ratio and the negative of the liquidity ratio and keep
the non-performing loan ratio with a positive sign. Each transformed series is winsorised at the 1%
tails and standardised to z-scores with mean zero and unit variance. I then average the three z-scores
to obtain the composite fragility index 𝐸 𝑓 𝑟𝑎𝑔,𝑧. Higher values of 𝐸 𝑓 𝑟𝑎𝑔,𝑧 reflect lower capital buffers,
higher non-performing loans, and weaker liquidity positions.

The crypto adoption environment is measured using the Chainalysis 2024 Geography of Cryp-
tocurrency country rankings (Chainalysis, 2024). As this ranking is ordinal, I transform it into a
continuous measure. I let Rank𝑐 be the rank for country c and let 𝑅𝑚𝑎𝑥 be the maximum rank in
the sample. I define the inverse rank InvRank𝑐 = 𝑅𝑚𝑎𝑥 + 1 − Rank𝑐, which increases in adoption,
and then compute a percentile 𝐴𝑝𝑐𝑡,𝑐 = InvRank𝑐/𝑅𝑚𝑎𝑥 . To centre this variable, I subtract its
sample median and define the final adoption measure as 𝐴𝑝𝑐,𝑐 = 𝐴𝑝𝑐𝑡,𝑐 − 𝑚𝑒𝑑𝑖𝑎𝑛 (𝐴𝑝𝑐𝑡). Values of
𝐴𝑝𝑐 lie approximately between minus one half and plus one half, with positive values indicating
above-median crypto adoption. I use 𝐴𝑝𝑐 as the dependent variable in the cross-sectional adoption
model (1) and as an interaction term in the triple-difference event-study specification (4).

Countries listed by the IMF as advanced economies are assigned an indicator of zero, while all other
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countries are assigned one and treated as EMDEs. All exposure indices are time-invariant over the
event window. I standardise 𝐸𝑠𝑜𝑣,𝑧 and 𝐸 𝑓 𝑟𝑎𝑔,𝑧 at the country level, so that coefficients in regressions
can be interpreted as the effect of a one standard deviation change in exposure. Table A1 reports the
resulting country composition of the event-study samples, including each country’s EMDE status,
the number of liquid listed banks, the exposure index, the two-day cumulative abnormal return, and
the crypto adoption percentile.

3.3 Stablecoin Regulatory Shock: Identification and Visualisation

The GENIUS Act proceeds through a multi-stage legislative process and generates information at
several points. Equity market participants can update their expectations before final passage when
hearings, committee votes, or news leaks change the perceived likelihood that the Act will become
law. If I dated the event using only the formal signing date, I would ignore this learning process and
risk mistiming the main information arrival. To identify the shock that is most relevant for bank
valuations, I use intraday prices from a prediction market rather than a simple calendar date.

The data is obtained from the Polymarket prediction market contract “GENIUS Act signed into law
in 2025?” (Polymarket, 2025). Polymarket is a decentralised, crypto-settled exchange where traders
buy and sell binary claims that pay if a specified event occurs. Contract prices, scaled between 0
and 1, can be interpreted as market-implied probabilities under standard assumptions about risk
neutrality and the absence of arbitrage (Snowberg et al., 2013). In this setting, the contract price
reflects the consensus probability that the GENIUS Act will become law, conditional on all public
and private information known at each point in time.

I transform the time series of contract prices into log-odds in order to work with an unbounded scale.
I let 𝑝𝑡 denote the contract price at timestamp t. I define the log-odds 𝑙𝑡 = log(𝑝𝑡/(1 − 𝑝𝑡)). A unit
change in 𝑙𝑡 corresponds to a proportional change in the odds that the Act will pass.

To isolate the main information shock, I search for the largest sustained upward revision in the
log-odds series ℓ𝑡 . For each timestamp t, I compute two local medians:

ℓ̃
𝑝𝑟𝑒
𝑡 =

(
ℓ𝑡−𝐻 , . . . , ℓ𝑡−1

)
,

ℓ̃
𝑝𝑜𝑠𝑡
𝑡 =

(
ℓ𝑡+1, . . . , ℓ𝑡+𝐻

)
,

and define the sustained shift as
𝑠𝑡 = ℓ̃

𝑝𝑜𝑠𝑡
𝑡 − ℓ̃𝑝𝑟𝑒𝑡 .

Intuitively, 𝑠𝑡 measuress whether beliefs about passage move to a new level after t, rather than
jumping briefly and reverting. I standardise 𝑠𝑡 by a robust volatility estimate 𝜎 of intraday changes
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in ℓ𝑡 (based on the dispersion of Δℓ𝑡 . A timestamp is flagged as a candidate shock when|𝑠𝑡 | > 𝐾 𝜎,
with 𝐻 = 12 observations (several hours on each side) and 𝐾 = 4. Finally, I enforce a minimum
time separation between candidates and select the one with the largest |𝑠𝑡 |as the dominant sustained
increase, which I treat as the regulatory event time.
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Figure 1: Prediction-market log-odds for the GENIUS Act shock.
Notes: The figure plots intraday Polymarket prices for the contract “GENIUS Act signed into law in 2025?”
transformed to log-odds, ℓ𝑡 = log

(
𝑝𝑡/(1 − 𝑝𝑡 )

)
, where 𝑝𝑡 is the market-implied probability of passage. The vertical

dashed line marks the largest sustained upward shift in ℓ𝑡 identified by the shock-detection algorithm and used to define
the regulatory event timestamp. Event day 𝑘 = 0 is mapped to each country’s first local trading session whose market
close occurs after this timestamp.

Figure 1 reports the resulting prediction-market dynamics. This plots the log-odds series for the
“GENIUS Act signed into law in 2025?” contract in UTC, together with a vertical dashed line at
the identified shock time. For most of the sample, the log-odds remain in a relatively narrow band
between roughly 2 and 3, which corresponds to implied probabilities between about 88 and 95
per cent (Figure A1). Around mid-July 2025 there is a sharp and persistent upward movement in
log-odds that the algorithm classifies as the dominant sustained increase. The identified timestamp
is 17 July 2025 at approximately 17:00 UTC. At this point the log-odds increase from around 3.5 to
almost 7 within a few hours, which implies a move in the passage probability from the mid-90s
to effectively 100 per cent. This lines up closely with major news coverage of the bill: on 17 July
2025 Reuters published an Instant View story titled “US House sends ‘Genius Act’ stablecoin bill to
Trump to sign”, summarising market reaction to the House vote (Reuters, 2025). Instant View is
Reuters’ rolling format for rapid market reaction to major macro-financial news, and Reuters News
is distributed globally. Therefore, it is natural to interpret the identified shock as a response to the
arrival of this widely disseminated legislative news. (Refinitiv, 2025).

I interpret the dominant sustained increase in the prediction-market log-odds as the regulatory
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information shock that resolves remaining uncertainty about the GENIUS Act, and I treat its UTC
timestamp as the event time. Because the shock is identified intraday while bank returns are
measured at daily closes, I map the event moment to each bank’s local trading calendar. For each
bank, I set event day k=0 to the first local trading day whose market close occurs after the shock. If
the shock arrives before the local close, k=0 is the same trading day because investors can react
within that session. If the shock arrives after the close, or on a local weekend or holiday, k=0 is the
next trading day when the market reopens. This follows standard event-study practice with daily
data, where after-hours information is reflected in the next trading day’s return (MacKinlay, 1997).
With a shock at 17 July 2025, 17:00 UTC, U.S. and most American markets were still open, so k=0
falls on 17 July for those listings. Markets in Europe, Africa, Asia, and Oceania were already closed,
so k=0 falls on their next local trading day. Any remaining asynchrony may introduce timing noise,
but this mapping still yields a consistent international event window for the DiD and event-study
analysis.

3.4 Sample Characteristics and Descriptive Statistics

The empirical sample is formed by intersecting four requirements: (i) listed banks whose equity
meets the liquidity screen, (ii) countries with available World Development Indicators (WDI) data
for constructing the store-of-value exposure, (iii) countries with available Financial Soundness
Indicators (FSI) data for constructing the fragility exposure, and (iv) countries that appear in the
Chainalysis crypto-adoption rankings and have sufficient equity-return coverage around the GENIUS
Act shock his intersection yields 55 countries with complete information for the cumulative abnormal
return and store-of-value specification, and 45 countries for the fragility specification. The resulting
sample spans advanced economies and EMDEs across all major regions (Table A1).
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Table 1: Descriptive statistics and correlations
Panel A: Summary statistics

Variable 𝑁 Mean SD P10 P50 P90

CAR0,1 55 -1.021 97.120 -83.036 -2.636 113.636
Adoption 𝐴pc 55 0.135 0.267 -0.260 0.173 0.437
𝐸SoV
𝑧 55 0.000 1.000 -0.367 -0.270 0.130

𝐸
Frag
𝑧 45 0.000 1.000 -0.759 -0.002 0.616

Panel B: Pairwise correlations

CAR0,1 𝐴pc 𝐸SoV
𝑧 𝐸

Frag
𝑧

CAR0,1 1.000 -0.175 -0.124 0.242
𝐴pc -0.175 1.000 0.226 -0.039
𝐸SoV
𝑧 -0.124 0.226 1.000 -0.048

𝐸
Frag
𝑧 0.242 -0.039 -0.048 1.000

Notes: This table reports summary statistics (Panel A) and Pearson correlations (Panel B) for the main variables.
The cumulative abnormal return CAR0,1 is measured in basis points over the [0, 1] event window. Adoption 𝐴pc is
the median-centred within-sample adoption percentile. 𝐸SoV

𝑧 and 𝐸Frag
𝑧 are standardised exposure composites for

the store-of-value and bank-fragility specifications, respectively. Percentiles are computed within the estimation
sample. Panel B reports Pearson correlations based on all available pairs of observations (pairwise deletion).

Table 1, Panel A reports summary statistics for the country-level cumulative abnormal return,
𝐶𝐴𝑅𝑐 (0, 1), the adoption measure 𝐴𝑝𝑐, and the exposure indices 𝐸sov,𝑧and 𝐸frag,𝑧. The mean of
𝐶𝐴𝑅𝑐 (0, 1) is 1 bps. Given the large dispersion, this average should not be interpreted as evidence
of “no effect” by itself, but it does indicate that the typical country-level reaction is small relative to
cross-country variation. The standard deviation is 97 bps, and the 10th and 90th percentiles are
83 bps and 114 bps. Some countries experience sizable negative abnormal returns while others
exhibit positive reactions, pointing to economically meaningful heterogeneity in how markets price
the regulatory shock.

The adoption measure 𝐴𝑝𝑐 is centred slightly above zero (mean 0.135) with a standard deviation
of 0.267. High positive values correspond to countries that Chainalysis ranks near the top of its
adoption index, such as Nigeria, Türkiye, and Vietnam, aligning with narratives of “cryptoisation”
and “digital dollarisation” in EMDEs (BIS, 2023b; Chainalysis, 2024). Negative 𝐴𝑝𝑐values are
concentrated among high-income economies with comparatively limited use of crypto assets. Their
percentile ranges show substantial cross-country variation in both store-of-value weakness and
banking fragility, which is central to the exposure-based hypotheses.

Table 1, Panel B reports Pearson correlations using pairwise available observations. The correlation
between 𝐶𝐴𝑅𝑐 (0, 1) and 𝐸sov,𝑧 is 0.124, while the correlation between 𝐶𝐴𝑅𝑐 (0, 1) and 𝐸frag,𝑧

is 0.242. These magnitudes are modest, but their signs align with the idea that countries with
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weaker monetary fundamentals or more fragile banking systems may be viewed as more exposed
to stablecoin-related disintermediation risk. Adoption is positively correlated with store-of-value
weakness (0.226), supporting the hypothesis that crypto use tends to be higher where domestic
money performs poorly as a store of value. Adoption is essentially uncorrelated with fragility
(0.039), suggesting that cross-country differences in crypto use are not mechanically tied to bank
balance-sheet weakness.

Several limitations should be noted. The bank panel includes only listed and relatively liquid
institutions, so it may under-represent vulnerabilities among small or unlisted banks. The store-of-
value and fragility indices rely on annual WDI and FSI data, which may miss intra-year developments
or institutional features such as deposit-insurance credibility. The Chainalysis adoption index is
ordinal and based on a proprietary methodology, and my transformation from ranks to median-centred
percentiles implicitly treats adjacent ranks as equally spaced. Missing WDI, FSI, or Chainalysis
observations largely reflect data gaps in low-income or small economies rather than selection on
equity-return outcomes. Despite these caveats, the combined dataset offers a structured setting to
study heterogeneity around the GENIUS Act shock by linking bank-equity reactions to a tightly
identified regulatory information event and to country-level measures of monetary weakness, banking
fragility, and crypto adoption.

4 Empirical Design and Results

4.1 Adoption Environment

Before I study the market reaction to the GENIUS Act, I first characterise how crypto adoption
varies across countries. This addresses RQ1 and provides the background for interpreting the
return-based results. In particular, it documents how the exposure indices that later enter the
event–study regressions co-move with adoption in the cross-section, and how these relationships
differ between advanced economies and EMDEs.

The IMF advanced and EMDE classification is a natural way to organise the adoption results.
Policy discussions of stablecoins and digital dollarisation typically emphasise their implications for
EMDEs, but the underlying mechanisms, such as substitution out of local currency deposits into
dollar denominated claims, are not conceptually confined to those countries. From an econometric
perspective, the EMDE indicator captures broad cross-country differences in income levels and
financial structures in a parsimonious way, while the continuous store of value and bank fragility
indices measure variation in monetary and banking conditions both within and across these groups.
The heterogeneity analysis therefore relies primarily on the exposure indices, with the advanced
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versus EMDE split providing a coarse but externally defined dimension along which the adoption
exposure relationship may differ. (International Monetary Fund, 2025)

I use the median-centred adoption percentile 𝐴𝑝𝑐,𝑖 as the dependent variable for country 𝑖. The
key explanatory variable 𝐸𝑧,𝑖 denotes either the standardised store-of-value index 𝐸sov,𝑧,𝑖 or the
standardised bank-fragility index 𝐸frag,𝑧,𝑖. I include an indicator EMDE𝑖 that equals one for EMDEs
and zero for advanced economies. I estimate the following pooled interaction regression:

𝐴𝑝𝑐,𝑖 = 𝛽0 + 𝛽1𝐸𝑧,𝑖 + 𝛽2EMDE𝑖 + 𝛽3(𝐸𝑧,𝑖 × EMDE𝑖) + 𝜀𝑖 . (1)

I estimate equation (1) by ordinary least squares and report heteroskedasticity-robust HC3 standard
errors (MacKinnon & White, 1985). HC3 standard errors are used because cross-country data are
likely to exhibit heteroskedasticity and influential observations. HC3 offers improved finite-sample
properties compared to conventional Eicker–White corrections (MacKinnon & White, 1985). In
this specification, 𝛽1 is the exposure–adoption slope for advanced economies, 𝛽1 + 𝛽3 is the slope
for EMDEs, and 𝛽2 captures the EMDE–advanced difference in adoption at the mean exposure level
(𝐸𝑧,𝑖 = 0).

H1 predicts 𝛽1 ≥ 0 and 𝛽1 + 𝛽3 > 0, with 𝛽3 > 0 indicating that adoption responds more strongly to
exposure in EMDEs.

Table 2: Adoption and Exposure with EMDE Interaction

Panel A: Store-of-Value Panel B: Bank Fragility
𝐸sov,𝑧 𝐸frag,𝑧

Advanced slope (𝛽𝐴 = 𝛽1) 0.030 (0.850) −0.118 (0.184)
EMDE slope (𝛽𝐸 = 𝛽1 + 𝛽3) 0.051** (0.025) −0.023 (0.070)
Slope difference (Δ = 𝛽3) 0.021 (0.851) 0.095 (0.197)
EMDE level (𝛽2) −0.100 (0.240) 0.109 (0.082)

Observations (𝑁) 144 68
𝑅2 0.045 0.030

Notes: This table reports pooled OLS regressions of adoption on the standardised
exposure composite, an EMDE indicator, and their interaction. The dependent variable
is 𝐴𝑝𝑐, the median-centred adoption percentile. Each panel uses the exposure shown in
the column header (𝐸sov,𝑧 in Panel A and 𝐸frag,𝑧 in Panel B). Heteroskedasticity-robust
(HC3) standard errors are reported in parentheses. “Advanced slope” is the marginal
effect of exposure for advanced economies (𝛽1); “EMDE slope” is the marginal
effect for EMDEs (𝛽1+𝛽3); “Slope difference” is the difference between EMDE and
advanced slopes (𝛽3); “EMDE level” is the EMDE–advanced intercept difference at
𝐸=0 (𝛽2). *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Figure 2: Crypto Adoption and Exposure with EMDE Interaction.
Notes: This figure plots the median-centred crypto adoption percentile 𝐴𝑝𝑐 against (Panel A) store-of-value weakness
𝐸sov,𝑧 and (Panel B) bank fragility 𝐸frag,𝑧 . Solid lines show within-group OLS fits for advanced economies and EMDEs
from equation (1); shaded bands denote 95% confidence intervals for the fitted mean using HC3 robust standard errors.

The two panels of Table 2 and Figure 2 use different country samples. Panel A includes 144
countries for which both adoption and the store-of-value composite are available. Panel B includes
68 countries because the fragility index requires IMF Financial Soundness Indicator data, which are
only reported for a subset of jurisdictions. The adoption regressions in this section therefore use
a broader cross-country sample than the event-study return analysis in Sections 4.2–4.5, which is
restricted to countries that have exposure and adoption data and sufficiently liquid listed banks that
meet the return-data requirements.

Store-of-value

Panel A of Table 2 and Figure 2 set 𝐸𝑧,𝑖 = 𝐸sov,𝑧,𝑖. For advanced economies, the exposure–adoption
slope is small and imprecise: the advanced slope is 0.030 (SE = 0.850) and is not statistically
significant at the 10% level. Economically, a one-standard-deviation increase in the store-of-value
index is associated with only a 3-percentile-point change in adoption among advanced economies,
which is negligible relative to the cross-country dispersion in 𝐴𝑝𝑐 (Table 1).

For EMDEs, the slope is larger and precisely estimated. The EMDE slope is 0.051 (SE = 0.025),
statistically significant at the 5% level. Thus, a one–standard-deviation increase in store-of-value
stress is associated with an increase of around 5 percentile points in crypto adoption for EMDEs.
The EMDE intercept difference at average exposure is −0.100 (SE = 0.240), which is not statistically
significant at the 10% level, indicating that at average store-of-value conditions adoption levels in
EMDEs and advanced economies are similar.

The formal test of a slope difference across groups is weak. The slope difference (interaction term)
is 0.021 (SE = 0.851) and is not statistically significant at the 10% level. Nonetheless, the point
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estimates and Figure 2, Panel A, show a clear pattern: the fitted line for EMDEs slopes upward
across the observed range of 𝐸sov,𝑧, while the advanced-economy line is nearly flat and lies within
a wide confidence band. In practice, the positive association between store-of-value stress and
adoption comes almost entirely from the EMDE subsample. The model explains only a modest
share of cross-country variation in adoption (𝑅2 = 0.045), which is consistent with the parsimonious
specification and the noisy nature of cross-country adoption data.

Bank fragility

Panel B of Table 2 and Figure 2 set 𝐸𝑧,𝑖 = 𝐸frag,𝑧,𝑖. In this case, neither group exhibits a statistically
meaningful exposure–adoption slope. For advanced economies, the advanced slope is −0.118 (SE =
0.184) and is not statistically significant at the 10% level. For EMDEs, the EMDE slope is −0.023
(SE = 0.070), also not statistically significant at the 10% level. The slope difference is 0.095 (SE
= 0.197) and again is not statistically significant at the 10% level, so there is no evidence of a
differential sensitivity of adoption to fragility across income groups.

The EMDE intercept difference at average fragility is 0.109 (SE = 0.082). This estimate implies that,
at 𝐸frag,𝑧 = 0, EMDEs have crypto adoption percentiles roughly 11 points higher than advanced
economies, but the coefficient is not statistically significant at the 10% level. The fitted lines in
Figure 2, Panel B, are almost flat and accompanied by wide confidence bands, which confirms that
cross-country differences in the fragility composite are not systematically associated with adoption
once EMDE status is controlled for.

Interpretation

The adoption regressions show that adoption is more strongly associated with store-of-value stress
in EMDEs than in advanced economies, while the bank-fragility composite does not exhibit a strong
relationship with adoption in either group. As discussed above, point estimates for the EMDE
intercepts also indicate higher adoption at average exposure, although these level differences are not
precisely estimated.

In relation to H1, the evidence provides partial support. Within EMDEs, adoption increases with
store-of-value stress in a way that is statistically and economically significant at conventional levels.
This is consistent with households and firms using crypto assets and stablecoins to hedge inflation
and currency depreciation. At the same time, there is no robust association between adoption and
bank fragility, and the formal tests do not indicate large differences in exposure slopes between
EMDEs and advanced economies. The limited explanatory power of the regressions and the
imprecision of some coefficients underline that these patterns should be viewed as descriptive rather
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than definitive.

From an econometric perspective, equation (1) is best interpreted as a descriptive characterisation
of how adoption co-varies with monetary and banking conditions, rather than as a structural model.
The results suggest that the store-of-value and fragility indices capture distinct dimensions of the
macro-financial environment, with adoption primarily linked to the monetary dimension. For RQ1,
the main conclusion is that, in this sample, crypto adoption tends to be higher in EMDEs and is
more closely associated with weaker store-of-value conditions than with weaker banking conditions.
In the subsequent event-study analysis, the store-of-value and fragility indices enter as separate
exposure variables, allowing bank-equity returns around the GENIUS Act shock to be related to
each underlying dimension in turn.

4.2 Average Post-Shock Effect on Bank Equity

I test RQ2 in a reduced-form event-window cross-section by relating the two-day cumulative
abnormal return, CAR𝑖 (0, 1), to the exposure indices. I examine whether countries with weaker
monetary and banking conditions experience more negative bank equity returns in the immediate
short-run period following the GENIUS Act shock. This specification provides a transparent
benchmark for H2 before I test the dynamic panel event-study. For each country 𝑖, I estimate the
following regression separately for store-of-value weakness and bank fragility:

CAR𝑖 (0, 1) = 𝛼 + 𝛽𝐸𝑧,𝑖 + 𝜀𝑖 . (2)

The dependent variable CAR𝑖 (0, 1) is the cumulative abnormal return in basis points from event day
𝑘 = 0 to 𝑘 = 1. I estimate equation (2) by ordinary least squares with heteroskedasticity-robust HC3
standard errors (MacKinnon & White, 1985). The regressor 𝐸𝑧,𝑖 denotes either the standardised
store-of-value index 𝐸sov,𝑧,𝑖 or the standardised bank-fragility index 𝐸frag,𝑧,𝑖. I aggregate bank-level
abnormal returns to the country level before estimation, so each country contributes a single
observation to the cross-section. The slope coefficient 𝛽 measures the effect of a one-standard-
deviation change in exposure on the two-day post-shock CAR in bps. A value of CAR𝑖 (0, 1) = −50
therefore corresponds to a 0.5% cumulative underperformance of banks in country 𝑖 relative to the
domestic equity benchmark over the two trading days after event.

The event window 01 is chosen to capture the short-run return of banks after the GENIUS Act
shock while accommodating the mapping from the intraday UTC timestamp to local trading days.
A two-day window reduces the influence of microstructure noise relative to a single-day reaction
and allows equity markets in non-US time zones to incorporate the information shock in the first
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full trading day after it becomes common knowledge (MacKinlay, 1997). At the same time, it
remains short enough that confounding macroeconomic or policy news is less likely to dominate the
return variation. The cross-section includes only countries that (i) have complete exposure data and
(ii) satisfy the return-data requirements for constructing CAR𝑖 (0, 1); that is, I require non-missing,
liquidity-screened abnormal returns for both event days 𝑘 = 0 and 𝑘 = 1 in a country. The resulting
country composition of the store-of-value and fragility event-study samples is summarised in Table
A1, Panels A and B.

H2 predicts 𝛽 < 0 for both exposures where countries with weaker money or more fragile banks
should display more negative post-window cumulative abnormal returns.

Table 3: Post-Window Cross-Section: CAR(0–1) on Exposure

Panel A: Store-of-Value (SoV) Panel B: Bank Fragility

Exposure (𝛽) −11.3 (12.8) 45.5 (44.3)

Observations (𝑁) 55 45
𝑅2 0.015 0.059
Adj. 𝑅2 −0.003 0.037

Notes: This table reports cross-sectional OLS regressions of the post-window
cumulative abnormal return, CAR(0–1), on standardised exposure composites.
The dependent variable is CAR(0–1) in basis points, measured over event days
𝑘 ∈ [0, 1]. Panel A uses the store-of-value exposure 𝐸sov,𝑧; Panel B uses the
fragility exposure 𝐸frag,𝑧 . Heteroskedasticity-robust (HC3) standard errors are
reported in parentheses. Coefficients and standard errors are expressed in basis
points and rounded to one decimal place. Intercepts are estimated but not reported.
*, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Store-of-value

Table 3, Panel A reports the results for store-of-value weakness. The sample contains 55 countries
that satisfy the data requirements for both the event window and the store-of-value composite.
The estimated coefficient on 𝐸sov,𝑧,𝑖 is −11.3 bps (SE = 12.8). This coefficient is not statistically
significant at the 10 percent level. Economically, a one-standard-deviation increase in the store-of-
value index is associated with an 11.3 bps decline in the two-day post-shock cumulative abnormal
return. This effect is small when compared with the cross-country distribution of CAR𝑖 (0, 1) in
Table 1, Panel A, where the standard deviation is close to 100 bps and the 10th–90th percentile
range spans roughly −80 to +110 bps. The 𝑅2 of 0.015 (and slightly negative adjusted 𝑅2) indicates
that, in this simple one-regressor specification, variation in the store-of-value composite accounts
for only a modest fraction of the observed cross-sectional dispersion in two-day abnormal returns,
which remain largely idiosyncratic at this horizon.
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Bank fragility

Panel B uses the bank-fragility index 𝐸frag,𝑧,𝑖 as the exposure. The sample reduces to 45 countries
because the fragility composite requires IMF Financial Soundness Indicator data on capital, non-
performing loans, and liquidity that are not available for all jurisdictions. The estimated coefficient
is 45.5 bps (SE = 44.3). This coefficient is also not statistically significant at the 10 percent level.
The positive sign runs against the directional prediction in H2, which anticipates more negative
post-shock bank returns in more fragile systems. However, the estimate is imprecise. The large
standard error again implies a wide confidence band that is consistent with economically small
negative effects, negligible effects, or positive effects. The 𝑅2 rises to 0.059 (adjusted 𝑅2 = 0.037)
in the smaller sample, but the overall fit remains limited: most of the cross-country variation in
CAR𝑖 (0, 1) is not captured by the fragility index alone.

Interpretation

Taken together, the coefficients and standard errors in Table 3 provide little evidence that the GENIUS
Act generates a strong, unconditional linear relationship between short-horizon bank cumulative
abnormal returns and the composite exposure measures. In this reduced-form cross-section, the data
do not support H2: neither store-of-value weakness nor bank fragility is associated with statistically
or economically large differences in CAR𝑖 (0, 1).

At the same time, the null result should be interpreted cautiously and primarily as descriptive. The
cross-section contains only 55 countries for the store-of-value regression and 45 for the fragility
regression, which limits statistical power. The exposure variables are composite indices constructed
from annual macroeconomic and supervisory data and are likely measured with error; under classical
measurement error, noise in 𝐸𝑧,𝑖 attenuates the estimated slope toward zero in equation (2) and
biases against detecting significant effects (Wooldridge, 2010). The effect of the GENIUS Act
may also vary over event time or depend on the crypto adoption environment, features that a static,
one-factor cross-section cannot capture. Finally, a two-day event window may be too short for equity
markets to fully incorporate the implications of a structural regulatory change, particularly when the
main channel operates through gradual deposit substitution and business-model adaptation rather
than immediate cash-flow shocks (MacKinlay, 1997).

For these reasons, I view equation (2) and Table 3 as a descriptive benchmark rather than as
the definitive test of RQ2. I therefore turn to a richer DiD design that exploits the full daily
panel of abnormal returns, interacts exposure with event-time indicators, and includes country and
day fixed effects. This panel framework traces the dynamic response of bank equity around the
prediction-market shock, to test formally for pre-event parallel trends, and to examine whether
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exposure loads more strongly in the post window once common shocks and time-invariant country
heterogeneity are removed.

4.3 Dynamic Exposure Effect around the Shock

I revisit RQ2 with a dynamic DiD specification that relates daily abnormal bank equity returns to
exposure and event time. This framework exploits the full country–day panel around the GENIUS
Act shock and removes both time-invariant cross-country heterogeneity and common global shocks.
It therefore aims to marginally sharpen identification relative to the cross-sectional CAR regressions
in Section 5.2 (Angrist & Pischke, 2009; MacKinlay, 1997; Wooldridge, 2010).

Let 𝑌𝑖,𝑘 denote the abnormal bank equity return in bps for country 𝑖 on event day 𝑘 . Let 𝐸𝑧,𝑖 denote
either the standardised store-of-value index 𝐸sov,𝑧,𝑖 or the standardised bank-fragility index 𝐸frag,𝑧,𝑖.
I estimate the following event-time regression separately for each exposure measure:

𝑌𝑖,𝑘 = 𝛼𝑖 + 𝛿𝑘 +
∑︁
ℓ≠𝑘0

𝛽ℓ
(
𝐸𝑧,𝑖 × 1{𝑘 = ℓ}

)
+ 𝑢𝑖,𝑘 , (3)

where 𝛼𝑖 are country fixed effects, 𝛿𝑘 are event-time fixed effects, and 𝑘0 = −1 is the omitted
baseline day. The coefficient 𝛽𝑘 measures the change, on event day 𝑘 , in the slope of abnormal
returns with respect to exposure relative to the pre-event baseline.

Country fixed effects remove time-invariant heterogeneity in bank risk, banking structure, and
regulatory environment that might be correlated with exposure. Day fixed effects absorb any global
news or market-wide shocks that affect all countries on a given event day, including macroeconomic
announcements and general volatility around the GENIUS Act process. Identification therefore
comes from within-country movements in returns around the shock that are differentially related
to exposure, conditional on these fixed effects. I estimate equation (3) using a fixed effects panel
estimator and cluster standard errors at the country level. With 19 event days in the store-of-value
panel and 16 in the fragility panel, the number of time clusters is small, so two-way clustering by
country and day would produce unstable covariance estimates. Clustering on countries is appropriate
because exposure varies only across countries and because daily returns can exhibit serial correlation
and heteroskedasticity within country (Angrist & Pischke, 2009; Wooldridge, 2010).

As a summary of the immediate post-event impact, I also estimate a specification that averages the
exposure effect over the two-day post window:

𝑌𝑖,𝑘 = 𝛼𝑖 + 𝛿𝑘 + 𝛽post (𝐸𝑧,𝑖 × Post𝑘
)
+ 𝑢𝑖,𝑘 , (4)
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where Post𝑘 = 1{𝑘 ∈ [0, 1]}. The coefficient 𝛽post is the difference between the exposure slope in
the two-day window 𝑘 ∈ [0, 1] and the baseline day 𝑘 = −1. H2 predicts 𝛽𝑘 < 0 for 𝑘 ≥ 0 and
𝛽post < 0 for both exposure measures: more exposed countries should experience more negative
abnormal returns once the GENIUS Act information arrives.

Table 4: Dynamic DiD with Fixed Effects: Post-Window Average Exposure Slope

Panel A: Store-of-Value Panel B: Bank Fragility

𝐸𝑧 × Post −3.2 (5.18) 16.0 (18.45)
Pretrend Wald 𝑝 0.080 0.880

Observations (country–day) 608 498
Entities (countries) 55 45
Time periods (dates) 19 16
Within 𝑅2 0.0003 0.0009

Notes: This table reports post-event average exposure coefficients from a dynamic
difference-in-differences event-study specification estimated by PanelOLS with
country and day fixed effects. The dependent variable is the daily abnormal bank
equity return, in basis points. “𝐸𝑧 × Post” is the average of the post-event exposure
coefficients over 𝑘 ∈ [0, 1], relative to the pre-event baseline period 𝑘0 = −1.
𝐸SoV
𝑧 (Panel A) and 𝐸Frag

𝑧 (Panel B) are the standardised store-of-value and fragility
exposure indices, respectively. Standard errors are clustered at the country level and
reported in parentheses. “Pretrend Wald 𝑝 (all 𝑘 < 0)” reports the 𝑝-value from a
joint test that all pre-event exposure coefficients are equal to zero. *, **, *** indicate
significance at the 10%, 5%, and 1% levels, respectively.

The store-of-value panel contains 608 country-day observations from 55 countries. Each country is
observed over an 11-day event window 𝑘 ∈ [−5, 5] around the GENIUS Act shock. Because the
intraday shock maps to different local sessions (same-day 𝑘 = 0 in the Americas and next-day 𝑘 = 0
elsewhere), this window spans 19 distinct calendar trading dates across countries. The fragility panel
contains 498 observations from 45 countries over the same event window, spanning 16 calendar
trading days; the smaller sample reflects more limited FSI coverage.

Average post-event exposure effect

Table 4 reports estimates of equation (4). For the store-of-value specification, the post-window
coefficient on 𝐸𝑧 × Post is −3.2 bps per one–standard-deviation increase in exposure (SE = 5.18),
which is not statistically significant at the 10% level. For the bank-fragility specification, the
corresponding estimate is 16.0 bps (SE = 18.45), also not statistically significant at the 10% level.
In both panels, the within-𝑅2 is close to zero, which is expected in a high-frequency return panel
with country and day fixed effects and a single time-invariant exposure interaction. Overall, the
post-window estimates do not indicate a clear negative exposure gradient in two-day abnormal
returns of the sign implied by H2.

30



5 4 3 2 0 1 2 3 4 5
Event day k

100

50

0

50

100
bp

s
Pretrend (k<0) Wald p = 0.080

Panel A: Store-of-Value

95% CI
Exposure slope k

5 4 3 2 0 1 2 3 4 5
Event day k

bp
s

Pretrend (k<0) Wald p = 0.880

Panel B: Bank Fragility

95% CI
Exposure slope k

Figure 3: Event-Time Exposure Coefficients Around the GENIUS Act Shock.
Notes: Points show dynamic DiD estimates of 𝛽𝑘 from equation (3), measuring how daily abnormal bank returns 𝑌𝑖,𝑘
load on exposure at each event day 𝑘 relative to the baseline 𝑘 = −1. Abnormal returns are country-level averages of
market-adjusted bank returns, expressed in basis points. Error bars denote 95% confidence intervals based on standard
errors clustered by country. Panels report results separately for store-of-value exposure 𝐸sov,𝑧 and bank-fragility
exposure 𝐸frag,𝑧 .

Figure 3 plots the full event-time profile of 𝛽𝑘 from equation (3), and Table A2 reports the underlying
coefficients. Around the event, the point estimates are small relative to their standard errors. In the
store-of-value specification the coefficients at 𝑘 = 0 and 𝑘 = 1 are 4.9 bps (SE = 12.57) and −25.5
bps (SE = 19.63), respectively; in the fragility specification, the corresponding estimates are −14.9
bps (SE = 19.99) and 45.7 bps (SE = 34.68). None of these post-event coefficients are statistically
different from zero at the 10 percent level, and the 95 percent confidence intervals around 𝛽𝑘 for
𝑘 ≥ 0 span zero in both panels (Figure 3; Table A2).

The DiD interpretation of equation (3) requires that, absent the GENIUS Act shock, countries with
higher and lower exposure would have followed parallel paths in abnormal returns, conditional on the
fixed effects. I assess this assumption using joint Wald tests of the pre-event exposure coefficients.
For the store-of-value specification, the hypothesis that all pre-event coefficients are zero has a
p-value of 0.080. For the fragility specification, the corresponding p-value is 0.880. At the 5% level,
I do not reject the null of zero pre-event slopes in either case. At the 10% level, the store-of-value test
is marginal, which I interpret as weak evidence that some pre-event coefficients may deviate slightly
from zero but without a clear pattern. The pre-event point estimates are individually imprecise, and
their magnitudes are comparable to those in the post period, so the pre-trend diagnostics are broadly
consistent with, but do not strongly reinforce, the parallel-trends assumption (Figure 3; Table A2).

Interpretation

The dynamic panel results do not support H2, and RQ2 remains unsubstantiated. Conditional
on country and day fixed effects, neither store-of-value weakness nor bank fragility generates a
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statistically or economically large negative exposure slope in daily abnormal bank returns in the two
days following the GENIUS Act shock. The estimated post-event exposure coefficients are small
relative to their standard errors and, where statistically different from zero, they do not line up in a
way that is consistent with a monotonic, adverse adjustment for more exposed countries. This is
consistent with the literature’s integration view and with uncertainty over how strictly GENIUS will
be implemented. The absence of a dynamic exposure gradient implies that, at this margin, market
participants do not revise bank franchise values more in weak-money or fragile-bank environments.
Any disintermediation effects must either be too small to detect in short-run prices, already priced
before the shock, or contingent on implementation and scale.

From an econometric perspective, the dynamic specification in equations (3) and (4) marginally
strengthen identification relative to the cross-sectional regression in Section 4.2 by exploiting the full
panel, absorbing time-invariant country heterogeneity and common shocks, and providing explicit
pre-trend tests. The fact that the results remain null in this setting suggests that any heterogeneous
effect of the GENIUS Act on bank equities that operates through the store-of-value and fragility
indices is either very small in the short run or too imprecisely estimated to be distinguished from
zero in this sample. This outcome is consistent with the view that very short-horizon event windows
have low signal-to-noise ratios in returns and that even moderate measurement error in composite
exposure indices attenuates slope coefficients toward zero (MacKinlay, 1997; Wooldridge, 2010).

At the same time, these average exposure effects do not rule out more nuanced forms of heterogeneity.
Section 4.1 shows that adoption responds more strongly to store-of-value weakness in EMDEs than
in advanced economies. Motivated by this pattern, Section 4.4 extends the empirical design to a
triple-difference specification that interacts exposure with crypto adoption. This specification asks
whether the GENIUS Act has more pronounced adverse equity effects in countries that combine weak
monetary or banking conditions with high crypto adoption and shifts the focus to the amplification
role of adoption.

4.4 Adoption as an Amplifier of Exposure

To address RQ3 I test whether a countries crypto adoption amplifies the effect of exposure on bank
equity abnormal returns around the GENIUS Act shock. I allow the exposure slope to vary both
with event time and with the adoption level. Let 𝑌𝑖,𝑘 again denote the abnormal bank equity return in
basis points for country 𝑖 on event day 𝑘 . Let 𝐸𝑧,𝑖 denote either 𝐸sov,𝑧,𝑖 or 𝐸frag,𝑧,𝑖, and let 𝐴𝑖 denote
the median-centred adoption percentile 𝐴𝑝𝑐,𝑖. For each exposure measure I estimate the dynamic
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triple DiD specification:

𝑌𝑖,𝑘 = 𝛼𝑖 + 𝛿𝑘 +
∑︁
ℓ≠𝑘0

𝛾ℓ
(
𝐸𝑧,𝑖𝐴𝑖1{𝑘 = ℓ}

)
+
∑︁
ℓ≠𝑘0

𝛽ℓ
(
𝐸𝑧,𝑖1{𝑘 = ℓ}

)
+
∑︁
ℓ≠𝑘0

𝜃ℓ (𝐴𝑖1{𝑘 = ℓ}) + 𝑢𝑖,𝑘 ,
(5)

where 𝛼𝑖 are country fixed effects, 𝛿𝑘 are day fixed effects, and the omitted baseline period is
𝑘0 = −1. The coefficient 𝛾𝑘 measures how the exposure slope with respect to 𝐸𝑧,𝑖 varies with
adoption at event day 𝑘 , relative to the baseline. I estimate equation (5) by fixed effects panel OLS
and cluster standard errors at the country level. Because 𝐴𝑖 is centred at its sample median, 𝛽𝑘 is the
exposure slope for a country with median adoption and 𝜃𝑘 is the adoption slope for a country with
average exposure. As in Section 4.3, I also report a summary specification that averages the triple
interaction over the two-day post window:

𝑌𝑖,𝑘 = 𝛼𝑖 + 𝛿𝑘 + 𝛾post(𝐸𝑧,𝑖𝐴𝑖Post𝑘 ) + 𝛽post(𝐸𝑧,𝑖Post𝑘 ) + 𝜃post(𝐴𝑖Post𝑘 ) + 𝑢𝑖,𝑘 , (6)

where Post𝑘 = 1{𝑘 ∈ [0, 1]}. H3 predicts that crypto adoption amplifies adverse exposure effects.
Under H3, higher adoption strengthens the negative exposure slope after the shock. This implies
𝛾𝑘 < 0 for 𝑘 ≥ 0 and 𝛾post < 0.
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Table 5: Dynamic DDD with Fixed Effects: Post-Window Average Triple Interaction

Panel A: Store-of-Value Panel B: Bank Fragility

𝐸𝑧 × 𝐴 × Post −19.19 (74.07) 94.79 (189.97)
𝐸𝑧 × Post 4.45 (27.47) −11.37 (52.75)
𝐴 × Post −7.81 (32.23) 14.44 (54.64)
Pretrend Wald 𝑝 0.003 0.500

Observations (country–day) 608 498
Entities (countries) 55 45
Time periods (dates) 19 16
Within 𝑅2 0.0006 0.0012

Notes: This table reports post-event average triple-difference coefficients from a
dynamic event-study regression with country and day fixed effects. The dependent
variable is the daily abnormal bank equity return in basis points. 𝐸𝑧 denotes the
standardised exposure composite (𝐸sov,𝑧 in Panel A and 𝐸frag,𝑧 in Panel B), and 𝐴𝑖
is the median-centred adoption percentile 𝐴𝑝𝑐,𝑖 . The coefficient “𝐸𝑧 × 𝐴 × Post”
is the post-window average (over event days 𝑘 ∈ [0, 1]) of the triple interaction
𝐸𝑧,𝑖𝐴𝑖1{𝐾𝑡 = 𝑘} relative to the pre-event baseline period 𝑘0 = −1; the lower-order
post-event interactions “𝐸𝑧 × Post” and “𝐴 × Post” are reported for completeness.
Standard errors are clustered by country and reported in parentheses. “Pretrend
Wald 𝑝 (all 𝑘 < 0)” is the 𝑝-value from a joint test that all pre-event coefficients
in the corresponding DDD specification are equal to zero. ∗, ∗∗, ∗ ∗ ∗ indicate
significance at the 10%, 5%, and 1% levels, respectively.

The store-of-value panel contains 608 country–day observations from 55 countries and 19 event days.
The fragility panel contains 498 observations from 45 countries and 16 event days. These samples
match those used in Section 4.3, so identification again comes from within-country movements in
returns around the event that differ across the joint distribution of exposure and adoption.

Average post-event amplification

Table 5 reports the average post-event triple-difference coefficient 𝛾post from equation (6). For the
store-of-value specification, the estimate on 𝐸𝑧 × 𝐴 × Post is −19.19 bps (SE = 74.07). For the bank-
fragility specification, the corresponding coefficient is 94.79 bps (SE = 189.97). Neither estimate
is statistically different from zero at the 10% level, and both are small relative to their standard
errors. The lower-order post-event interactions on 𝐸𝑧 × Post and 𝐴 × Post are likewise imprecisely
estimated and not statistically significant (Table 5). On the two-day horizon 𝑘 ∈ [0, 1], the panel
averages therefore do not support H3: the data do not show that higher adoption systematically
strengthens the relationship between exposure and abnormal returns in either specification.

Pretrend diagnostics based on the triple interaction qualify this conclusion for the store-of-value
case. For store-of-value exposure, the joint Wald test that all pre-event 𝛾𝑘 are zero yields a p-value
of 0.003, which rejects the null at the 1% level. For bank fragility, the corresponding p-value is 0.50,
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and I do not reject the null of parallel pretrends in the triple interaction (Table 5).
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Figure 4: Adoption Amplification of Exposure Effects (Interquartile Shift).
Notes: Bars plot Δ𝑀𝐸 (IQR), the change in the marginal effect of exposure on abnormal bank returns when adoption
𝐴𝑝𝑐 rises from the 25th to the 75th percentile. Δ𝑀𝐸 (IQR) is computed from the dynamic triple-difference estimates in
equation (5) and reported for 𝑘 = 0 and 𝑘 = 1. Whiskers denote 95% confidence intervals derived from
country-clustered standard errors. Results are shown separately for 𝐸sov,𝑧 and 𝐸frag,𝑧 .

Figure 4 plots the change in the exposure effect when adoption moves from the 25th to the 75th
percentile, Δ𝑀𝐸 (IQR), for event days 𝑘 = 0 and 𝑘 = 1, and Table A3 reports the underlying
event-time coefficients 𝛾𝑘 . In the store-of-value specification, the post-event 𝛾𝑘 are imprecise: at the
announcement day and the day after, the estimates are on the order of −100 to 0 bps with standard
errors of similar magnitude, and none of the post-event coefficients are statistically significant at the
10% level (Figure 4; Table A3). By contrast, one pre-event coefficient is more pronounced: at 𝑘 = −2,
the store-of-value triple interaction is −201.3 bps (SE = 94.63), which is statistically significant at
the 5% level. Together with the pretrend Wald test, this indicates that countries combining weak
monetary conditions and high adoption already experienced relatively lower abnormal returns before
the GENIUS Act.

In the bank-fragility specification, the pre-event 𝛾𝑘 are noisy and jointly insignificant (Appendix
Table A3). The post-event coefficients are generally small relative to their standard errors, with one
notable exception: at 𝑘 = 1, the triple interaction is 504.5 bps (SE = 293.24), which is marginally
significant at the 10% level but associated with a wide confidence interval that spans economically
meaningful losses as well as large gains. In Figure 4, this appears as a large positive Δ𝑀𝐸 (IQR) for
fragility at 𝑘 = 1, whereas the corresponding bars for store-of-value are close to zero with confidence
intervals that cover moderate negative and positive changes. Overall, the event-time profile and
the Δ𝑀𝐸 (IQR) plot highlight substantial statistical uncertainty around the triple interaction effects
(Figure 4; Table A3).
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Interpretation

The empirical analysis therefore does not provide evidence in support of H3, and RQ3 remains
unsubstantiated. Conditional on country and day fixed effects, there is no consistent evidence that
higher crypto adoption amplifies the effect of weak monetary conditions or fragile banking systems
on short-run bank equity responses to the GENIUS Act. If such amplification exists, it is either small
in magnitude relative to the noise in daily returns, or it operates over a horizon longer than the event
window considered here (MacKinlay, 1997). Taken together with the results in Sections 4.2 and
4.3, the evidence suggests that market participants do not price the GENIUS Act primarily through
an interaction of pre-existing monetary or bank fragility with crypto adoption. This implies that
any adoption-threshold channel is not yet operating at a scale visible in short-horizon bank equities.
Abnormal returns do not react as if the GENIUS Act shock delivers new, price-relevant information
about deposit substitution. Instead, the pricing pattern is consistent with two concrete market
readings highlighted in the literature: investors either expect GENIUS to integrate stablecoins as
supervised, fully-reserved payment instruments that limit near-term competition with deposits, or
they wait for implementing rules—covering reserve verification, issuer constraints, and redemption
enforcement—to determine whether stablecoins become deposit-like at scale. Under either reading,
the marginal news does not warrant an immediate revision to expected bank cash flows or franchise
values, so equity prices show no systematic short-run response.

4.5 Robustness

The exposure estimates are imprecise, and the point estimates are small. A natural concern is
that these weak exposure effects reflect particular modelling choices, limited power in a small
cross-section with noisy returns, or a handful of influential countries, rather than the underlying
relationship between exposures and returns. The robustness analysis has two roles. First, it
evaluates whether alternative and equally defensible implementations of the event-study design,
return construction and sample compositions would overturn the main conclusion that exposure
effects are small and imprecise. Second, it quantifies the sampling uncertainty around the baseline
estimates and examines whether the results are sensitive to influential countries or to specific parts
of the cross-section, such as EMDEs, where adoption tends to be higher.

I focus on a targeted set of robustness checks. Each test addresses a concrete empirical concern that
arises from the design in Sections 5.1–5.4 and from standard issues in event-study econometrics
(MacKinlay, 1997; Wooldridge, 2010). I vary the abnormal return model by replacing simple
market-adjusted returns with 𝛽-adjusted returns estimated at the bank level, which mitigates concerns
about benchmark mis-specification. I change the aggregation scheme from equal-weighted to value-
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weighted country returns, which allows large banks to receive more weight in the cross-section. I
extend the event window for cumulative abnormal returns, which tests whether the effects materialise
over longer horizons than the two-day window used in the baseline. I trim countries with extreme
exposure and return realisations, which addresses the influence of heavy tails in equity returns. I also
study EMDE heterogeneity directly in the CAR cross-section, quantify minimum detectable effect
sizes, and implement jackknife leave-one-out tests to assess whether the baseline estimates depend
on any single country. Together, these robustness checks address issues of power, measurement error,
outliers and heterogeneity that can drive statistically insignificant results in small cross-sections
(Angrist & Pischke, 2009; MacKinnon & White, 1985; Wooldridge, 2010).

Cross-Sectional Robustness

Table 6: Robustness of Post-Window Cross-Section: CAR(0–1) on Exposure

(1) Baseline (2) 𝛽-adjusted (3) Value-weighted (4) CAR(0–10) (5) CAR(0–30) (6) Trimmed sample

Panel A: Store-of-Value
Exposure 𝛽 −11.3 (12.8) −11.1 (13.7) −3.4 (18.1) −42.0 (67.5) −87.4 (150.4) −31.6 (72.4)
Observations 𝑁 55 55 55 55 53 49
𝑅2 0.015 0.017 0.004 0.013 0.028 0.018
Adj. 𝑅2 −0.003 −0.001 −0.015 −0.005 0.009 −0.003

Panel B: Bank Fragility
Exposure 𝛽 45.5 (44.3) 38.6 (44.5) 25.5 (25.3) −17.9 (122.7) 79.8 (295.5) 25.5 (29.1)
Observations 𝑁 45 45 45 45 44 40
𝑅2 0.059 0.053 0.058 0.001 0.006 0.009
Adj. 𝑅2 0.037 0.031 0.036 −0.023 −0.017 −0.017

Notes: This table reports robustness checks for the post-window cross-sectional regression of the cumulative abnormal return
CAR(0–1) on the standardised exposure composites. Column (1) reproduces the baseline specification reported in Table 3 with
equally weighted country-level event-study returns. Column (2) uses abnormal returns that are 𝛽-adjusted with respect to the local
equity index. Column (3) replaces equal-weighted country-day returns with value-weighted returns based on bank-level trading
volume. Columns (4) and (5) extend the event window for the dependent variable to CAR(0–10) and CAR(0–30), respectively.
Column (6) trims countries with extreme dispersion in daily abnormal returns around the event. The dependent variable and
coefficients are measured in basis points. Heteroskedasticity-robust (HC3) standard errors are reported in parentheses. Intercepts
are estimated but not reported. *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively.

I begin by stress testing the cross-sectional CAR specification in equation (2), which provides the
most transparent reduced form for RQ2 and underpins the interpretation of the panel results. Table
6 reports estimates of equation (2) under alternative constructions of the abnormal return process
and the cumulative event window.

Table 6 reports estimates of equation (2) under alternative constructions of the abnormal-return
process and the cumulative event window. Panel A covers store-of-value exposure; Panel B covers
bank fragility. Column (1) reproduces the baseline equal weighted CAR(0–1) regression from
Table 3. Columns (2) and (3) vary the construction of abnormal returns. Column (2) replaces
simple market adjusted returns with bank level beta adjusted returns to check whether the results
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are sensitive to the benchmark. Abnormal returns are the residuals from a pre event regression
of bank returns on the domestic equity index, so that differences in banks’ systematic risk are
removed before relating returns to the exposure indices. Column (3) retains the short event window
but aggregates daily abnormal returns using weights proportional to each bank’s 30-day average
daily value traded. This construction gives larger and more liquid banks greater influence on the
country-level cumulative abnormal return. Columns (4) and (5) vary the event horizon by extending
the cumulative return window to CAR(0–10) and CAR(0–30) while maintaining equal weights.
Column (6) focuses on the influence of outliers by trimming countries with extreme joint realisations
of exposure and CAR. This test asks whether the exposure–return slope is similar once the most
extreme combinations of exposure and CAR are excluded, or whether the baseline result is driven
by a small number of tail observations.

The store-of-value results in Panel A are stable across specifications and remain statistically
insignificant. The baseline coefficient in column (1) is -11.3 bps, and the 𝛽-adjusted specification in
column (2) yields a very similar estimate of -11.1 bps. Value weighting in column (3) moves the
point estimate closer to zero, to -3.4 bps. Extending the event window to CAR010 and CAR030
in columns (4) and (5) produces more negative but increasingly noisy estimates, while trimming
extremes in column (6) gives -31.6 bps. In every case the confidence interval for the exposure
slope includes zero and spans moderate to potentially sizeable declines and gains. The 𝑅2values
range from 0.004 to 0.028 and the adjusted 𝑅2 is close to zero or negative, confirming that the
store-of-value index explains only a small fraction of the cross-country dispersion in cumulative
abnormal returns (Table 6).

The fragility results in Panel B are somewhat more variable in sign but display the same pattern
of statistical imprecision. The baseline coefficient in column (1) is 45.5 bps. The 𝛽-adjusted
specification in column (2) gives 38.6 bps, and value weighting in column (3) reduces the point
estimate to 25.5 bps. For the longer event windows, the estimates become very noisy: the CAR010
and CAR030 slopes in columns (4) and (5) have wide confidence intervals that encompass both
negative and positive effects of economically meaningful size. The trimmed sample in column (6)
yields 25.5 bps. Across all fragility specifications, the 95% confidence intervals contain zero, and
the 𝑅2 and adjusted 𝑅2 remain low and similar to the baseline regression (Table 6).

Econometrically, Table 6 addresses several potential concerns about the baseline cross-section. The
𝛽-adjusted specifications respond to the possibility that simple market-adjusted returns may leave
unmodelled systematic risk in the disturbance term, which could bias the exposure slope if exposures
correlate with betas (MacKinlay, 1997). In practice the 𝛽-adjusted estimates are nearly identical to
the baseline for store-of-value and only modestly smaller for fragility, which indicates that benchmark
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mis-specification is unlikely to explain the null results. Value-weighting shifts attention to the equity
performance of large banks, which matter more for aggregate financial stability and for international
investors. The results show that giving more weight to large banks does not uncover stronger or
more negative exposure effects. Extending the event window tests whether markets incorporate
the implications of the GENIUS Act more slowly than a two-day window can capture. Although
the point estimates for longer horizons become more negative for store-of-value, the associated
standard errors increase sharply, which reflects the low signal-to-noise ratio in multi-day bank
returns. Trimming extremes reduces the influence of countries with very large CAR or exposure
values. The trimmed estimates do not differ systematically from the untrimmed ones, which suggests
that the baseline results are not driven by a small number of outliers.

The pattern in Table 6 is consistent with the broader econometric constraints of this setting. The
cross-section contains at most 55 countries, and only 45 for the fragility regressions. Sampling
variability is therefore substantial and standard errors remain large even in simple one-regressor
models. Measurement error in the composite exposure indices is likely, because they combine annual
macroeconomic and supervisory indicators that are themselves imperfect measures of underlying
monetary and banking conditions. Under classical measurement error, this noise attenuates the
estimated slopes toward zero and reduces the probability of rejecting the null hypothesis even
when true effects exist (Wooldridge, 2010). Bank equity returns are volatile and respond to many
unobserved country-specific and global shocks that are not captured by the composite exposure
indices, which further lowers the signal-to-noise ratio in the CAR cross-section (MacKinlay, 1997).
Given these features, it is not surprising that even relatively large shifts in model specification,
weighting and window length do not yield precise estimates of exposure effects.

I interpret Table 6 as showing that the main conclusion from Section 4.2 is robust to a wide range of
plausible cross-sectional choices. There is no evidence that alternative abnormal return models,
weighting schemes, event windows or trimming rules reveal a strong and systematic relationship
between the composite exposure indices and short-horizon cumulative abnormal bank returns after
the GENIUS Act shock.

Jackknife and Minimum Detectable Effects

Table A4 summarises two complementary diagnostics for the post-window cross-sectional exposure
effect in equation (2): minimum detectable effects and leave-one-country-out jackknife slopes.
For store-of-value exposure, the baseline estimate is -11.3 bps with a 95% confidence interval of
roughly [−36, 14] bps and a minimum detectable effect (two standard errors) of about 25.6 bps. The
jackknife slopes range from -23.3to -9.1 bps and remain negative in every replication. For bank
fragility, the baseline estimate is 45.5 bps with a 95% confidence interval of roughly [−41, 132] bps
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and a minimum detectable effect of about 88.6 bps; the jackknife range is 21.6–68.5 bps and
remains positive across replications (Table A4). These diagnostics indicate that the cross-sectional
coefficients are internally stable to omitting individual countries, but that the sample only has power
to rule out relatively large exposure effects.

EMDE vs. Advanced Economies in CAR(0,1)

Table A5 examines whether the post-window cross-sectional exposure effect in equation (2) differs
between advanced economies and EMDEs. In the store-of-value specification, the advanced-
economy slope is positive but very imprecisely estimated, and the EMDE slope is small and close to
zero. The explanatory power is low in both subsamples. In the fragility specification, the advanced
and EMDE slopes are again imprecise, and the associated confidence intervals include economically
modest negative and positive effects. None of the subgroup coefficients is statistically different from
zero at the 10% level (Table A4). The split-sample regressions therefore do not reveal a robust
pattern of EMDE heterogeneity in the short-horizon CAR response.

𝛽-Adjusted Panel Specifications

Table A6 evaluates whether adjusting abnormal returns for bank-level market betas changes the
panel results for equations (4) and (6). For the post-window DiD specification summarising equation
(4), the 𝛽-adjusted exposure coefficients on 𝐸𝑧 × Postare -3.9 bps for store-of-value exposure and
13.0 bps for bank fragility. For the triple-difference specification associated with equation (6), the
𝛽-adjusted triple interactions 𝐸𝑧 × 𝐴 × Post are -25.1 bps in the store-of-value panel and 127.8 bps
in the fragility panel. In all cases the coefficients are small relative to their standard errors, not
statistically significant at conventional levels, and associated with within-𝑅2 values close to zero
(Table A6). The 𝛽-adjusted panel results therefore confirm that the main DiD and triple-difference
conclusions do not hinge on using simple market-adjusted abnormal returns.

Summary of Robustness Results

The robustness exercises in this section point to a consistent conclusion. Across a wide range of
plausible modelling choices for the CAR cross-section in equation (2) and the panel specifications in
equations (4) and (6), the exposure indices are not associated with statistically significant effects on
bank equity returns around the GENIUS Act shock. Adjusting the abnormal-return model, changing
the weighting scheme, extending the event window, trimming outliers, splitting the sample by EMDE
status, and re-estimating the models with 𝛽-adjusted returns all leave the point estimates small
relative to their standard errors. The jackknife and minimum detectable effect diagnostics suggest
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that the estimates are internally stable, but that the sample only has power to rule out relatively large
exposure effects in short-horizon returns.

Combined with the adoption evidence in Section 4.1 and the main results in Sections 4.2–5.4,
the robustness analysis supports the interpretation that, on the horizons considered here, market
participants do not appear to price the GENIUS Act through the composite store-of-value and
fragility exposures. If they do, the effect is too small to be detected in this sample given our
measurement approach.

4.6 Limitations

Several features of the data and the empirical design limit how far the results can be generalised.
These limitations do not overturn the findings, but they constrain the set of claims that the analysis
can support.

The country sample is small and selective. The store-of-value specifications include at most 55
countries and the fragility specifications at most 45 countries. Only countries with reliable exposure
data, crypto adoption measures and sufficiently liquid listed banks enter the event–study sample. This
selects toward more financially developed EMDEs and advanced economies with functioning equity
markets and supervisory reporting, and excludes many small or fragile jurisdictions. As a result,
statistical power is limited and external validity is restricted. The minimum detectable effects for
CAR(0–1) are sizable in basis-point terms, so the design can rule out only relatively large short-run
exposure effects. Smaller negative or positive effects remain observationally indistinguishable from
zero in this sample (Angrist & Pischke, 2009; Wooldridge, 2010).

The key regressors are composite indices and cross-country percentiles that are likely measured
with error. The store-of-value and fragility indices combine annual macroeconomic and supervisory
indicators. These inputs are themselves noisy proxies for underlying monetary stress and bank
health and they are measured at an annual frequency rather than exactly at the event date. The
crypto adoption measure is a within-sample percentile constructed from on-chain activity, exchange
data and related indicators and is subject to data coverage and modelling choices. Importantly, the
Chainalysis index captures overall crypto adoption and is not stablecoin-specific; if stablecoin usage
diverges from broader crypto activity across countries, this introduces additional measurement error
in my adoption proxy. Under a classical measurement-error framework, noise in these regressors
attenuates estimated slopes toward zero and lowers the probability of detecting true effects, especially
in small samples (Wooldridge, 2010). The weak exposure and amplification estimates may therefore
partly reflect imperfect measurement of monetary conditions, bank fragility and adoption rather
than the complete absence of underlying relationships.
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The mapping from the prediction-market timestamp to local trading days introduces additional
timing uncertainty. The identification of event day 0 relies on converting the intraday shock into
local exchange time and defining windows that straddle the information arrival. This approach is
standard in international event studies, but closing times, trading halts and market microstructure
can still cause the effective price reaction to spill across days (MacKinlay, 1997). The use of a
two-day [0,1] window reduces this concern relative to a one-day window, but it cannot fully align
the timing of all markets. This timing imprecision may further dilute measured exposure effects.

The outcome variable is daily abnormal bank-equity returns aggregated to the country level. Equity
returns respond to a broad set of observable and unobservable shocks, including risk-premia
movements, global risk sentiment and idiosyncratic news, which reduces the signal-to-noise
ratio in event-study regressions (MacKinlay, 1997). The construction of abnormal returns using
domestic equity indices, and in robustness checks beta-adjusted residuals, mitigates benchmark
mis-specification but may not remove all systematic components. Aggregating to country-level
abnormal returns helps to average out bank-specific noise but also hides within-country heterogeneity
in how individual banks respond to the shock. The analysis therefore cannot speak to distributional
effects across banks, nor to other risk dimensions such as funding costs, deposit flows, lending
volumes or default risk.

The analysis centres on a single regulatory shock and on short event windows. The GENIUS Act
prediction-market increase is treated as an exogenous information shock for global bank equities.
This places weight on the assumption that the change in predicted passage is not itself driven by
bank-specific news and that there are no other major regulatory or macroeconomic announcements
that systematically coincide with the event date. Short windows such as [0,1] are designed to
minimise confounding news, yet they cannot fully rule out overlapping information arrivals across
many countries and time zones (MacKinlay, 1997). Moreover, short horizons primarily capture
immediate repricing of expected cash flows and discount rates. They are less informative about
medium-run adjustments that may operate through gradual deposit substitution, changes in funding
structures, or shifts in business models.

The interpretation of the event also depends on the size of the news component. In the prediction-
market data, the implied probability of passage is already high in the days leading up to the event
timestamp, so the event captures a move from high to very high likelihood rather than from near-zero
to near-certain passage (Figure A1). In that case, theory implies that the incremental price effect is
proportional to the change in probability, not to the full impact of the regulation. If most of the
expected effect of the GENIUS Act is priced earlier, the remaining surprise on the event date is
small, and any associated exposure effects are correspondingly limited in magnitude. The estimates
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in this study are therefore best interpreted as measuring the response of bank-equity returns to the
final revision in expected passage probabilities, rather than to the introduction of the regulation itself.
This interpretation is conditional on the event date capturing a non-trivial information shock for
equity market participants who price the banks in my sample. Moreover, short horizons primarily
capture immediate repricing of expected cash flows and discount rates. They are less informative
about medium-run adjustments that may operate through gradual deposit substitution, changes in
funding structures, or shifts in business models. If the main consequences of the GENIUS Act
materialise over longer horizons, the short event windows used here are likely to understate the total
impact on bank valuations.

Inference uses heteroskedasticity-robust and cluster-robust standard errors in a setting with a
modest number of clusters. The cross-sectional regressions report HC3 standard errors to address
heteroskedasticity and influential observations (MacKinnon & White, 1985). The panel regressions
cluster at the country level to account for serial correlation and heteroskedasticity within countries
(Angrist & Pischke, 2009). With 45 to 55 countries and 16 to 19 time periods, cluster-robust
variance estimators may have non-negligible finite-sample distortions and the analysis does not
implement refinements such as wild bootstrap procedures (Cameron & Miller, 2015). Reported
p-values and confidence intervals should therefore be interpreted as approximate rather than exact.

The empirical models are deliberately parsimonious. The cross-sectional regressions relate
cumulative abnormal returns linearly to a single exposure composite. The panel specifications
introduce event-time and adoption interactions but maintain linearity in the indices. Heterogeneity
is captured only through EMDE status and the adoption percentile. The models do not allow for
non-linear effects, thresholds in exposure or adoption, or interactions with bank-level characteristics
such as size, funding structure or capitalisation. If the impact of the GENIUS Act depends in a
non-linear way on exposure or adoption, or is concentrated in particular types of banks or countries,
the linear average effects estimated here may understate those patterns.

Finally, the exposure measures do not incorporate bank-specific links to crypto markets or more
granular regulatory channels. The composite indices reflect macroeconomic conditions and
supervisory metrics at the country level. They do not capture heterogeneity in banks’ direct
involvement in crypto-related activities, their stablecoin customer base, or institution-specific
expectations about future regulation. If the main transmission of the GENIUS Act to bank valuations
operates through these micro channels, rather than through broad macro-financial conditions, the
current design may miss part of the relevant variation. The results should therefore be interpreted as
evidence about how short-run equity returns relate to aggregate monetary and banking conditions
and crypto adoption, rather than as a full assessment of all channels through which the GENIUS Act
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may affect bank risk and profitability.

Taken together, these limitations suggest that the analysis is well suited to ruling out large average
short-run exposure effects in bank-equity returns, given the available data and identification strategy.
It is less informative about smaller effects, longer horizons and richer forms of heterogeneity, which
motivates the need for complementary evidence in future work.

4.7 Implications for Future Research

The empirical results suggest several directions for future work on stablecoins, bank disintermediation
and regulation.

First, the evidence on RQ1 indicates that cross-country crypto adoption is more closely related
to store-of-value weakness than to bank fragility, particularly in EMDEs. Future research could
move beyond country-level indices and examine micro data on households and firms. Combining
survey evidence, transaction-level payment data and on-chain flows with macro indicators would
allow researchers to distinguish more sharply between adoption as an inflation hedge, as a payment
technology, or as a speculative asset. This would help to quantify how much of the observed
association between adoption and weak money reflects genuine currency substitution, and how much
reflects other motives.

Second, the weak and imprecise exposure effects for RQ2 and RQ3 motivate designs that follow
balance-sheet and funding variables over longer horizons. One natural extension is to link the
exposure indices used here to bank-level panel data on deposits, funding costs, loan growth and asset
composition. With a sufficiently long time series, researchers could test whether stablecoin growth
and regulatory developments are associated with persistent changes in banks’ liability structures and
credit supply, using DiD or local-projection methods. Such analyses would speak more directly to
the deposit-disintermediation and credit-supply channels that motivate much of the theoretical and
policy literature.

Third, the focus on a single regulatory event suggests that a broader event set would be valuable.
The GENIUS Act is an important legal development, but it represents only one point on a path of
policy announcements, legislative proposals and supervisory actions. Future work could construct
a panel of stablecoin-relevant events across major jurisdictions and estimate pooled event-study
and panel regressions. This would increase statistical power, permit comparisons across different
types of regulatory shocks, and provide a basis for formally testing whether markets respond more
strongly to hard legislation, to enforcement actions, or to supervisory guidance.

Fourth, the exposure measures in this thesis are defined at the country level and do not incorporate
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bank-specific links to crypto markets. The composite exposure indices and adoption percentiles
are transparent and comparable across countries, but they inevitably blur within-country and
within-bank variation. Future studies could separate stablecoin-specific activity from broader
crypto use, distinguish retail from institutional adoption, and incorporate bank-level indicators of
direct involvement in crypto markets or reliance on cross-border retail funding. Methodologically,
non-linear specifications, threshold models and interactions with bank characteristics such as size,
funding structure and capitalisation would help to identify whether stablecoin risks only become
material beyond certain adoption or exposure levels. This is particularly relevant for advanced
economies, where adoption is currently lower but could grow quickly if BigTech-issued coins emerge
as mainstream payment instruments.

Finally, the use of prediction-market data to time the information shock points to a broader
methodological agenda. Prediction markets increasingly provide high-frequency estimates of the
probability of policy events. Future work could exploit this feature more fully, for example by
modelling the joint dynamics of prediction-market prices and bank equities during legislative
processes, and by distinguishing between the pricing of incremental probability revisions and the
pricing of implementation details that follow after a law is passed. This would refine identification
of policy shocks and could be applied to other regulatory settings beyond stablecoins.

5 Conclusion

This thesis examines how the rise of dollar-pegged stablecoins interacts with traditional banking
systems through the lens of a major regulatory development, the U.S. GENIUS Act. The motivation
comes from concerns that credible, widely usable stablecoins may facilitate digital dollarisation and
disintermediate banks, especially where domestic money is weak or banking systems are fragile.
Within this context, the analysis addresses three research questions: how crypto adoption relates
to weak monetary and banking conditions across countries (RQ1), whether bank equity abnormal
returns around the GENIUS Act shock vary systematically with those conditions (RQ2), and whether
higher crypto adoption amplifies any such exposure effects (RQ3).

The evidence for RQ1 shows that crypto adoption tends to be higher in EMDEs than in advanced
economies and is positively associated with weaker monetary conditions. By contrast, crypto
adoption displays no strong or robust association with the weaker banking conditions. This is
consistent with the view that monetary instability, rather than weak bank capital and liquidity, is the
primary cross-country correlate of higher crypto adoption. This also suggests that the countries most
exposed to potential digital dollarisation are those that combine weak domestic money with already
high levels of crypto use. This pattern is broadly in line with the emerging empirical literature that

45



highlights stablecoin use in vulnerable monetary environments.

For RQ2, the cross-sectional and panel event-study results do not indicate statistically significant
exposure effects in bank-equity returns around the GENIUS Act shock. Robustness checks that vary
the construction of abnormal returns, the weighting scheme, the event window and the sample do
not overturn these results. For RQ3, the triple-difference specifications do not provide consistent
evidence that higher crypto adoption amplifies exposure effects on bank returns in the short-run
period following the Act.

Taken together, the main findings suggest that, as of the GENIUS Act event, the estimates do not
provide clear evidence of large, systematic exposure-related equity losses. Within the limits of
this design, there is no clear sign that equity-market participants treated the Act’s final passage
as a major, immediate threat to bank franchise values via deposit substitution, even in countries
with high adoption and weak monetary conditions. This interpretation is conditional on the event
date capturing a non-trivial information shock. This pattern is not inconsistent with the current
scale and use of stablecoins, which remain small relative to global bank balance sheets and are still
concentrated in trading and decentralised finance activity. It is also plausible that investors expect
the Act to channel stablecoins into a more regulated, complementary role, or that domestic policy
responses will limit destabilising outflows from banks in vulnerable jurisdictions.

At the same time, the null results do not imply that the underlying risks emphasised in the theoretical
and policy literature are irrelevant. The prediction-market path indicates that the event studied here
corresponds to a revision from a high to a very high probability of passage, not from near zero to
near certain passage. In that setting, standard asset-pricing logic implies that the price response is
proportional to the marginal change in expected outcomes, not to the full effect of the regulation. If
most of the anticipated impact of the GENIUS Act was capitalised earlier in the legislative process,
or if the main consequences arise gradually through changes in funding structures and business
models, then the two-day equity response around the final revision will be limited by design. The
estimates in this thesis are therefore interpreted as measuring the response of bank-equity returns
to the final revision in expected passage probabilities at short horizons, rather than to the full
long-run impact of the regulation itself. Under this interpretation, the null results indicate that large,
immediate marginal effects are not visible in bank equities at this stage, but they do not rule out
more gradual or nonlinear effects as stablecoins scale.

Within this interpretation, the thesis makes three contributions. I provide a baseline cross-country
characterisation of the relationship between crypto adoption, monetary weakness and bank fragility,
clarifying where digital dollarisation pressures are strongest. I introduce a novel regulatory setting
that uses prediction-market data to time a global stablecoin shock and applies event-study and

46



DiD modelling to bank equities in a broad international sample. Finally, I provide a market-based
benchmark for the current phase of the stablecoin–bank nexus. At current scale, and given the
limitations of this design, investors do not appear to price this type of stablecoin-specific regulation
as an immediate, first-order source of deposit-substitution or franchise-value risk for banks.

Looking forward, the message of this study is conditional and incremental rather than definitive.
The results suggest that, in the environment captured here, the stablecoin–bank nexus is still in an
early phase from the perspective of listed banks’ valuations. The central policy issue is therefore not
whether stablecoins can matter for banks in principle, but when, and through which channels, they
might start to do so in practice. If, stablecoins become deeply embedded in everyday payments and
savings, the same mechanisms that underlie classic dollarisation and shadow banking are likely to
become important. In that scenario, shifts from insured deposits into private digital dollars could
affect the cost and availability of credit, the resilience of domestic banking systems and, ultimately,
the stability of households’ access to safe money and payments.

The framework and evidence in this thesis provide a starting point for monitoring that evolution. As
new regulatory events unfold, as adoption continues to rise in EMDEs and possibly in advanced
economies, and as alternative architectures such as tokenised deposits and central bank digital
currencies develop, researchers could re-apply and extend this approach. Doing so will help
clarify when, and through which channels, private digital dollars begin to generate the material
disintermediation and financial-stability effects that current theoretical and policy debates anticipate.
This is important for academic understanding of how money, banking and private digital currencies
interact. It also matters for the design of regulatory regimes that support innovation in digital
finance while safeguarding bank-based intermediation and the stability of payment and savings
arrangements that households and firms rely on.
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Appendix

Table A1: Country Composition of Event-Study Samples

Country ISO3 Group 𝑁liquid banks 𝐸𝑧 CAR[0,1] (bps) 𝐴SoV
pc

Panel A: Store-of-Value Event-Study Regression Sub-Sample

Austria AUT Advanced 7 -0.249599 102.825470 0.013333
Belgium BEL Advanced 2 -0.238897 -77.626554 0.053333
Czechia CZE Advanced 2 -0.160031 9.957990 0.166667
Denmark DNK Advanced 16 -0.326862 -38.777828 -0.180000
Estonia EST Advanced 2 -0.219268 -49.537362 -0.086667
Finland FIN Advanced 5 -0.321034 57.719835 -0.046667
France FRA Advanced 11 -0.298475 47.902641 0.360000
Germany DEU Advanced 5 -0.285072 57.133515 0.366667
Greece GRC Advanced 7 -0.259825 89.119488 0.100000
Hong Kong SAR, China HKG Advanced 6 -0.318074 -280.580261 0.313333
Iceland ISL Advanced 2 -0.094843 189.759919 -0.440000
Ireland IRL Advanced 4 -0.292519 -54.110819 -0.173333
Israel ISR Advanced 8 -0.218185 -64.717252 0.040000
Italy ITA Advanced 15 -0.351401 -16.397003 0.260000
Korea, Rep. KOR Advanced 12 -0.170117 -33.838002 0.380000
Malta MLT Advanced 2 -0.316604 97.485360 -0.393333
Netherlands NLD Advanced 1 -0.228275 87.179477 0.293333
New Zealand NZL Advanced 1 -0.211690 -2.635511 -0.126667
Norway NOR Advanced 22 -0.193656 -74.608920 -0.153333
Portugal PRT Advanced 1 -0.276762 138.929753 0.173333
Slovenia SVN Advanced 1 -0.300214 88.077013 -0.140000
Spain ESP Advanced 6 -0.258123 -2.295865 0.340000
Switzerland CHE Advanced 16 -0.394253 -22.169123 0.140000
United States USA Advanced 466 -0.246461 13.521977 0.480000
Argentina ARG EMDE 7 6.088224 -22.426080 0.406667
Bangladesh BGD EMDE 36 0.360456 21.670743 0.273333
Brazil BRA EMDE 5 0.022210 -288.696525 0.440000
Bulgaria BGR EMDE 1 -0.274181 235.183110 0.153333
Chile CHL EMDE 5 0.127625 -1.783268 0.160000
China CHN EMDE 53 -0.349135 -164.127119 0.373333
Colombia COL EMDE 4 -0.199363 6.332107 0.266667

(continued on next page)
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Croatia HRV EMDE 3 -0.247825 -31.099304 -0.100000
Egypt, Arab Rep. EGY EMDE 11 2.253399 -44.321472 0.213333
Ghana GHA EMDE 2 1.782073 -91.724100 0.200000
Hungary HUN EMDE 2 -0.119164 -159.456841 0.106667
India IND EMDE 46 -0.110211 -86.642829 0.500000
Indonesia IDN EMDE 40 -0.186309 -7.031356 0.486667
Kazakhstan KAZ EMDE 3 0.129353 186.285956 0.126667
Kuwait KWT EMDE 10 -0.253087 0.989226 -0.313333
Malaysia MYS EMDE 11 -0.295980 -18.856341 0.193333
Mauritius MUS EMDE 2 -0.149841 -4.513061 -0.473333
Mexico MEX EMDE 4 -0.078322 -49.407539 0.413333
Morocco MAR EMDE 7 -0.394746 43.181063 0.326667
Namibia NAM EMDE 2 -0.195063 -19.742733 -0.373333
North Macedonia MKD EMDE 2 -0.221568 -6.661431 -0.146667
Pakistan PAK EMDE 19 0.241995 22.966797 0.446667
Philippines PHL EMDE 11 -0.159152 126.422075 0.453333
Poland POL EMDE 12 -0.333786 -57.888958 0.346667
Qatar QAT EMDE 9 -0.334032 2.002246 -0.366667
Romania ROU EMDE 2 -0.089177 -58.696117 0.073333
Saudi Arabia SAU EMDE 11 -0.312138 49.852001 0.233333
South Africa ZAF EMDE 5 -0.189229 3.305256 0.306667
Thailand THA EMDE 10 -0.294083 120.843306 0.400000
Turkiye TUR EMDE 11 3.555108 -70.388808 0.433333
United Arab Emirates ARE EMDE 14 -0.313416 45.966829 0.133333

Panel B: Fragility Event-Study Regression Sub-Sample

Austria AUT Advanced 7 -0.320047 102.825470 0.013333
Belgium BEL Advanced 2 0.130008 -77.626554 0.053333
Czechia CZE Advanced 2 -0.266913 9.957990 0.166667
Denmark DNK Advanced 16 -0.438202 -38.777828 -0.180000
Estonia EST Advanced 2 -0.199147 -49.537362 -0.086667
Finland FIN Advanced 5 -0.060719 57.719835 -0.046667
France FRA Advanced 11 0.078867 47.902641 0.360000
Germany DEU Advanced 5 -0.104723 57.133515 0.366667
Greece GRC Advanced 7 0.092516 89.119488 0.100000
Hong Kong SAR, China HKG Advanced 6 -1.290228 -280.580261 0.313333
Iceland ISL Advanced 2 -0.172579 189.759919 -0.440000
Ireland IRL Advanced 4 -0.543732 -54.110819 -0.173333

(continued on next page)
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Israel ISR Advanced 8 0.182300 -64.717252 0.040000
Italy ITA Advanced 15 -0.628539 -16.397003 0.260000
Malta MLT Advanced 2 -0.360335 97.485360 -0.393333
Netherlands NLD Advanced 1 0.014048 87.179477 0.293333
Norway NOR Advanced 22 -0.278623 -74.608920 -0.153333
Portugal PRT Advanced 1 -0.105288 138.929753 0.173333
Slovenia SVN Advanced 1 -0.119583 88.077013 -0.140000
Spain ESP Advanced 6 0.284822 -2.295865 0.340000
United States USA Advanced 466 -1.233586 13.521977 0.480000
Argentina ARG EMDE 7 -0.963983 -22.426080 0.406667
Bangladesh BGD EMDE 36 2.028111 21.670743 0.273333
Brazil BRA EMDE 5 -1.439828 -288.696525 0.440000
Bulgaria BGR EMDE 1 -0.262444 235.183110 0.153333
China CHN EMDE 53 -0.060983 -164.127119 0.373333
Croatia HRV EMDE 3 -0.428295 -31.099304 -0.100000
Ghana GHA EMDE 2 1.417694 -91.724100 0.200000
Hungary HUN EMDE 2 -0.150086 -159.456841 0.106667
India IND EMDE 46 -0.043584 -86.642829 0.500000
Indonesia IDN EMDE 40 -0.396419 -7.031356 0.486667
Kazakhstan KAZ EMDE 3 -0.484921 186.285956 0.126667
Kuwait KWT EMDE 10 0.112429 0.989226 -0.313333
Mauritius MUS EMDE 2 -0.404947 -4.513061 -0.473333
Mexico MEX EMDE 4 -0.565088 -49.407539 0.413333
North Macedonia MKD EMDE 2 -0.114666 -6.661431 -0.146667
Pakistan PAK EMDE 19 -0.245439 22.966797 0.446667
Philippines PHL EMDE 11 0.107209 126.422075 0.453333
Poland POL EMDE 12 -0.290369 -57.888958 0.346667
Romania ROU EMDE 2 -0.368103 -58.696117 0.073333
Saudi Arabia SAU EMDE 11 -0.055281 49.852001 0.233333
South Africa ZAF EMDE 5 0.362954 3.305256 0.306667
Thailand THA EMDE 10 -0.006146 120.843306 0.400000
Turkiye TUR EMDE 11 -0.288364 -70.388808 0.433333
United Arab Emirates ARE EMDE 14 0.173645 45.966829 0.133333

Notes: Panel A lists the countries included in the store-of-value (SoV) event-study regressions for equations (2)–(6),
where the exposure variable is the standardised SoV index 𝐸SoV

𝑧 . Panel B lists the subset of these countries for which
the bank-fragility exposure index 𝐸Frag

𝑧 is available and that therefore enter the fragility event-study regressions for
equations (2)–(6). 𝑁liquid banks denotes the number of banks with sufficiently liquid equity return data in each country.
CAR[0,1] is the cumulative abnormal bank-equity return over event days 0–1 (in basis points) around the GENIUS Act
shock. 𝐴SoV

pc is the median-centred crypto adoption percentile averaged at the country level.
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Table A2: Dynamic DiD with Fixed Effects: Event–Time Coefficients by Exposure
Panel A: Store-of-Value

𝑘 𝛽𝑘 SE 𝑝 Low (95% CI) High (95% CI)
Baseline 𝑘 = −1 (omitted)
-5 25.9 24.01 0.281 −21.25 73.09
-4 −24.0 16.40 0.144 −56.21 8.22
-3 1.0 17.04 0.951 −32.44 34.52
-2 −10.2 10.21 0.319 −30.25 9.88
0 4.9 12.57 0.695 −19.76 29.63
1 −25.5 19.63 0.195 −64.07 13.07
2 −13.0 17.30 0.454 −46.96 21.02
3 −17.0 9.50 0.073 −35.69 1.63
4 −17.8 24.58 0.470 −66.08 30.50
5 13.5 12.52 0.280 −11.04 38.14
Pretrend Wald 𝑝 (all 𝑘 < 0): 0.080 𝑁/entities/time periods: 608 / 55 / 19

Within 𝑅2: 0.0113

Panel B: Bank Fragility

𝑘 𝛽𝑘 SE 𝑝 Low (95% CI) High (95% CI)
Baseline 𝑘 = −1 (omitted)
-5 −32.9 41.50 0.428 −114.49 48.65
-4 14.4 38.84 0.712 −61.98 90.69
-3 −5.0 23.92 0.835 −52.00 42.03
-2 6.1 31.11 0.844 −55.03 67.27
0 −14.9 19.99 0.457 −54.16 24.41
1 45.7 34.68 0.188 −22.44 113.89
2 5.6 43.13 0.896 −79.14 90.42
3 11.4 19.22 0.553 −26.36 49.20
4 6.9 28.67 0.811 −49.49 63.21
5 −11.5 42.04 0.785 −94.10 71.17
Pretrend Wald 𝑝 (all 𝑘 < 0): 0.880 𝑁/entities/time periods: 498 / 45 / 16

Within 𝑅2: 0.0086
Notes: This table reports event-time coefficients for the interaction between
the exposure composite and event-time dummies from a dynamic difference-in-
differences regression with country and day fixed effects. The dependent variable
is the daily abnormal bank equity return in basis points. Each row shows
the coefficient 𝛽𝑘 (bps) for the exposure term at event time 𝑘 relative to the
omitted pre-event period 𝑘0 = −1, along with the clustered standard error (“SE”),
two-sided 𝑝-value (“𝑝”), and 95% confidence interval (“Low” and “High”).
Panel A uses the store-of-value exposure 𝐸sov,𝑧; Panel B uses the bank-fragility
exposure 𝐸frag,𝑧 . “Pretrend Wald 𝑝 (all 𝑘 < 0)” is the 𝑝-value from a joint test
that all pre-event exposure coefficients are equal to zero. Within 𝑅2, the number
of entities, and the number of time periods are taken from the corresponding
PanelOLS estimation.
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Table A3: Dynamic DDD with Fixed Effects: Event–Time Coefficients for Exposure ×
Adoption

Panel A: Store-of-Value

𝑘 𝛽𝑘 SE 𝑝 Low (95% CI) High (95% CI)
Baseline 𝑘 = −1 (omitted)
-5 −140.0 241.32 0.562 −614.11 334.14
-4 427.2 314.93 0.176 −191.52 1046.00
-3 −117.2 130.39 0.369 −373.36 138.97
-2 −201.3 94.63 0.034 −387.18 −15.35
0 −136.6 151.93 0.369 −435.05 161.95
1 −32.7 161.05 0.839 −349.13 283.70
2 9.2 252.34 0.971 −486.55 504.99
3 −122.3 116.63 0.295 −351.41 106.88
4 −117.2 185.72 0.528 −482.11 247.65
5 33.2 389.08 0.932 −731.24 797.58

Pretrend Wald 𝑝 (all 𝑘 < 0): 0.003 𝑁/entities/time periods: 608 / 55 / 19
Within 𝑅2: 0.0268

Panel B: Bank Fragility

𝑘 𝛽𝑘 SE 𝑝 Low (95% CI) High (95% CI)
Baseline 𝑘 = −1 (omitted)
-5 303.4 450.60 0.501 −582.35 1189.2
-4 279.4 350.19 0.426 −409.06 967.8
-3 285.9 183.28 0.120 −74.40 646.2
-2 137.1 310.63 0.659 −473.58 747.7
0 34.7 193.78 0.858 −346.19 415.7
1 504.5 293.24 0.086 −71.93 1081.0
2 128.8 303.56 0.673 −467.95 725.5
3 356.4 244.13 0.145 −123.50 836.3
4 185.4 306.38 0.546 −416.90 787.7
5 562.6 653.28 0.391 −721.63 1846.8

Pretrend Wald 𝑝 (all 𝑘 < 0): 0.500 𝑁/entities/time periods: 498 / 45 / 16
Within 𝑅2: 0.0277

Notes: This table reports event-time coefficients for the interaction between
exposure, adoption, and event-time dummies from a triple-difference regression
with country and day fixed effects. The dependent variable is the daily abnormal
bank equity return in basis points. Each row shows the coefficient 𝛽𝑘 (bps)
for (𝐸𝑧 × 𝐴) at event time 𝑘 relative to the omitted pre-event period 𝑘0 = −1,
along with the clustered standard error (“SE”), two-sided 𝑝-value (“𝑝”), and
95% confidence interval (“Low” and “High”). Panel A uses the store-of-value
exposure 𝐸sov,𝑧 ; Panel B uses the bank-fragility exposure 𝐸frag,𝑧 . “Pretrend Wald
𝑝 (all 𝑘 < 0)” is the 𝑝-value from a joint test that all pre-event coefficients in the
DDD specification are equal to zero.
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Table A4: Jackknife and minimum detectable effect for CAR(0–1)

𝛽 (bps) SE (bps) 95% CI [lo, hi] MDE (|𝑡 | = 2) Jackknife min Jackknife max 𝑁

Store-of-Value −11.3 12.8 [−36.4, 13.8] 25.6 −23.3 −9.1 55
Bank Fragility 45.5 44.3 [−41.3, 132.3] 88.6 21.6 68.5 45

Notes: This table summarises robustness of the post-window cross-sectional exposure effect from Table 3. The
dependent variable is the cumulative abnormal return CAR(0–1) in basis points. Columns report the point
estimate 𝛽, heteroskedasticity-robust (HC3) standard error (“SE”), the associated 95% confidence interval,
and the minimum detectable effect (“MDE”), defined as 2 × SE in absolute value (the effect size that would
correspond to |𝑡 | ≈ 2). “Jackknife min” and “Jackknife max” are the minimum and maximum estimates from
leave-one-country-out jackknife replications of the baseline cross-sectional regression. 𝑁 is the number of
countries in the cross-section. Coefficients and intervals are rounded to one decimal place.

Table A5: EMDE vs. Advanced Economies: CAR(0,1)

Panel A: Store-of-Value Panel B: Bank Fragility

Advanced slope (𝛽Adv) 277.5 (379.5) 109.6 (105.3)
EMDE slope (𝛽EMDE) −9.8 (13.2) 30.9 (47.6)

Observations (𝑁), Advanced 24 21
Observations (𝑁), EMDE 31 24
𝑅2, Advanced 0.038 0.197
𝑅2, EMDE 0.019 0.035

Notes: This table reports split-sample OLS regressions of the post-window cumulative
abnormal return CAR(0–1) on the standardised exposure composite, run separately for
advanced economies and EMDEs. The dependent variable is CAR(0–1) in basis points,
measured over event days 𝑘 ∈ [0, 1]. Panel A uses the store-of-value exposure 𝐸sov,𝑧;
Panel B uses the bank-fragility exposure 𝐸frag,𝑧 . “Advanced slope” and “EMDE slope”
are the estimated coefficients on 𝐸𝑧 within each group. Heteroskedasticity- robust (HC3)
standard errors are reported in parentheses. Coefficients are in basis points and rounded
to one decimal place. *, **, *** indicate significance at the 10%, 5%, and 1% levels,
respectively.
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Table A6: 𝛽-adjusted panel results for Post-Window Cross-Section and Dynamic DiD

Panel A: Store-of-Value Panel B: Bank Fragility

Post-window exposure slope (𝛽-adjusted)
𝐸𝑧 × Post −3.9 (4.73) 13.0 (17.94)

Post-window triple interaction (𝛽-adjusted)
𝐸𝑧 × 𝐴 × Post −25.1 (64.19) 127.8 (184.87)
𝐸𝑧 × Post 6.7 (24.12) −24.2 (47.79)
𝐴 × Post −20.5 (28.71) 13.7 (49.78)

Observations (country–day) 608 498
Entities (countries) 55 45
Time periods (dates) 19 16
Within 𝑅2 0.0004 0.0009
Within 𝑅2 0.0009 0.0019

Notes: This table reports post-event average coefficients from 𝛽-adjusted panel
specifications. Abnormal returns are adjusted using bank-level market betas with
respect to the domestic equity index. The dependent variable is the daily abnormal
bank equity return, in basis points. The first block reports the coefficient on the
interaction 𝐸𝑧,𝑖 × Post𝑡 , where Post𝑡 = 1 for event days 𝑘 ∈ [0, 1] and zero otherwise,
from a specification with country and day fixed effects. The second block augments
this specification by adding the triple interaction 𝐸𝑧,𝑖𝐴𝑖 × Post𝑡 and the lower-order
post-event terms 𝐸𝑧,𝑖 × Post𝑡 and 𝐴𝑖 × Post𝑡 , where 𝐴𝑖 is the median-centred adoption
percentile 𝐴𝑝𝑐,𝑖 . 𝐸sov,𝑧 (Panel A) and 𝐸frag,𝑧 (Panel B) are the standardised store-of-
value and fragility exposure indices, respectively. Standard errors are clustered at the
country level and reported in parentheses. Coefficients are expressed in basis points
and rounded to one decimal place. *, **, *** indicate significance at the 10%, 5%,
and 1% levels, respectively.
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Figure A1: Prediction-Market Probability of the GENIUS Act Signed Into Law in 2025.
Notes: This figure plots the daily implied probability from the Polymarket contract “GENIUS Act signed into law in
2025?”. The vertical dashed line marks the sustained-increase shock timestamp used to define the event date in the main
analysis. Probabilities are extracted from Polymarket price data and expressed on a 0–1 scale; higher values indicate a
greater market-implied likelihood of enactment.
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